在 FOXA2 缺失的 iPSC 模型中识别与胰岛功能障碍有关的 miRNA 信号。

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cell Reviews and Reports Pub Date : 2024-10-01 Epub Date: 2024-06-25 DOI:10.1007/s12015-024-10752-0
Ahmed K Elsayed, Noura Aldous, Nehad M Alajez, Essam M Abdelalim
{"title":"在 FOXA2 缺失的 iPSC 模型中识别与胰岛功能障碍有关的 miRNA 信号。","authors":"Ahmed K Elsayed, Noura Aldous, Nehad M Alajez, Essam M Abdelalim","doi":"10.1007/s12015-024-10752-0","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1915-1931"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model.\",\"authors\":\"Ahmed K Elsayed, Noura Aldous, Nehad M Alajez, Essam M Abdelalim\",\"doi\":\"10.1007/s12015-024-10752-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"1915-1931\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10752-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10752-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病的发病机制涉及胰岛细胞内 mRNA 和非编码 RNA 表达谱的复杂变化。诱导多能干细胞(iPSC)技术的最新进展使得糖尿病相关基因的建模成为可能。我们最近利用 FOXA2 缺失的人类 iPSC 模型进行的研究强调了 FOXA2 在人类胰腺发育过程中的重要作用。在这里,我们旨在通过研究缺失 FOXA2 基因的 iPSC 衍生胰岛中的 miRNA-mRNA 调控网络,进一步了解微小 RNA(miRNA)的作用。与我们之前的研究结果一致,FOXA2 基因的缺失显著下调了胰岛激素、INS 和 GCG 以及胰岛中其他关键发育基因的表达。同时,RNA-Seq分析显示,与胰腺发育相关的基因表达明显下调,而与神经系统发育和脂质代谢途径相关的基因表达则明显上调。此外,iPSC衍生胰岛中FOXA2的缺失导致miRNA表达发生了显著变化,61个miRNA上调,99个下调。上调的 miRNA 针对的是与糖尿病和胰岛细胞发育有关的关键基因。相反,如果胰岛中缺乏 FOXA2,则会出现针对神经系统发育和脂质代谢相关基因的 miRNA 下调网络。这些发现凸显了FOXA2缺失对胰岛发育的影响,并表明影响胰岛细胞发育的miRNA-mRNA调控网络错综复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model.

Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model.

The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信