紫锥菊苷激活Nrf2/PPARγ信号通路,调节线粒体融合-分裂平衡,从而改善氧化-LDL诱导的冠状动脉内皮细胞功能障碍。

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Xiandi Qiu, Yuxing Feng
{"title":"紫锥菊苷激活Nrf2/PPARγ信号通路,调节线粒体融合-分裂平衡,从而改善氧化-LDL诱导的冠状动脉内皮细胞功能障碍。","authors":"Xiandi Qiu, Yuxing Feng","doi":"10.1007/s00210-024-03233-1","DOIUrl":null,"url":null,"abstract":"<p><p>As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"9767-9776"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells.\",\"authors\":\"Xiandi Qiu, Yuxing Feng\",\"doi\":\"10.1007/s00210-024-03233-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"9767-9776\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03233-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03233-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种心血管疾病,冠心病预后不良,发病率和死亡率不断上升。紫锥栗苷(ECH)具有抗氧化和抗炎特性,可预防多种心血管疾病。然而,ECH 在冠心病中的作用仍不明确。在经 ECH 处理的人冠状动脉内皮细胞(HCAECs)中,使用细胞计数试剂盒-8(CCK-8)测定法、二氨基荧光素-FM 二乙酸酯(DAF-FM DA)染色法、Western 印迹法和管道形成法分别检测了细胞活力、NO 生成、内皮一氧化氮合酶(eNOS)表达和血管生成能力。使用二氯二氢荧光素二乙酸酯(DCFH-DA)检测法和相应的检测试剂盒检测氧化应激标志物的活性。利用流式细胞术和 caspase3 检测法检测细胞凋亡。采用 Western 印迹法检测 Nrf2/PPARγ 信号通路和线粒体动力学相关蛋白的表达。采用 JC-1 染色和免疫荧光(IF)检测线粒体膜电位和线粒体融合与分裂。本研究发现,ECH 可通过激活 Nrf2/PPARγ 信号通路,恢复氧化-LDL 诱导的 HCAECs 的活力、改善内皮功能障碍、抑制氧化应激和抑制细胞凋亡,而 Nrf2 抑制剂 ML385 可抑制这些作用。研究还发现,ECH 通过激活 Nrf2/PPARγ 信号通路调节氧化-LDL 诱导的 HCAECs 线粒体融合-裂变平衡。总之,ECH 激活 Nrf2/PPARγ 信号通路以调节线粒体融合-裂变平衡,从而改善 ox-LDL 诱导的 HCAECs 功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells.

Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells.

As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信