{"title":"用于表征铝镁硅铜合金中纳米团簇的聚类识别算法中的参数优化。","authors":"MinYoung Song, Equo Kobayashi, JaeHwang Kim","doi":"10.1093/mam/ozae053","DOIUrl":null,"url":null,"abstract":"<p><p>Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al-Mg-Si(-Cu) alloys was introduced.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"635-649"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Optimization in Cluster Identification Algorithms for Characterizing Nanoclusters in Al-Mg-Si-Cu Alloys.\",\"authors\":\"MinYoung Song, Equo Kobayashi, JaeHwang Kim\",\"doi\":\"10.1093/mam/ozae053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al-Mg-Si(-Cu) alloys was introduced.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\" \",\"pages\":\"635-649\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对用于表征铝-0.9%镁-1.0%硅-0.3%铜(质量百分比)中纳米团簇的基于密度的有噪声应用空间聚类(DBSCAN)算法中的用户定义参数(Dmax、Nmin、阶次(K))进行了优化。对 100°C 下自然老化(NA)和预老化(PA)的样品考虑了给定 K 的十种参数组合。通过分析成分、尺寸、原子密度和簇内原子排列,我们确认了四种人为形成的非物理簇。在 NA 和 PA 样品中都获得了将这些非物理团簇最小化的最佳组合。同时,为了评估最佳组合的可靠性,还进行了体积渲染和等值面分析。结果表明,溶质浓度较高的区域得到了确认,这些区域与应用 DBSCAN 中的最优组合所得到的簇的位置十分吻合。此外,通过将最优组合与迄今为止广泛使用的固定参数进行比较,我们发现对于每个数据集而言,考虑同一方法中获得的独立参数比使用固定参数更可取。因此,我们提出了确定表征铝镁硅(铜)合金中纳米团簇的算法参数的想法。
Parameter Optimization in Cluster Identification Algorithms for Characterizing Nanoclusters in Al-Mg-Si-Cu Alloys.
Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al-Mg-Si(-Cu) alloys was introduced.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.