Xiaowei Guo, Wuhao Yang, Xingyin Xiong, Zheng Wang, Xudong Zou
{"title":"具有刚度调节功能的 MEMS 水库计算系统,用于边缘多场景数据处理。","authors":"Xiaowei Guo, Wuhao Yang, Xingyin Xiong, Zheng Wang, Xudong Zou","doi":"10.1038/s41378-024-00701-9","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) is a bio-inspired neural network structure which can be implemented in hardware with ease. It has been applied across various fields such as memristors, and electrochemical reactions, among which the micro-electro-mechanical systems (MEMS) is supposed to be the closest to sensing and computing integration. While previous MEMS RCs have demonstrated their potential as reservoirs, the amplitude modulation mode was found to be inadequate for computing directly upon sensing. To achieve this objective, this paper introduces a novel MEMS reservoir computing system based on stiffness modulation, where natural signals directly influence the system stiffness as input. Under this innovative concept, information can be processed locally without the need for advanced data collection and pre-processing. We present an integrated RC system characterized by small volume and low power consumption, eliminating complicated setups in traditional MEMS RC for data discretization and transduction. Both simulation and experiment were conducted on our accelerometer. We performed nonlinearity tuning for the resonator and optimized the post-processing algorithm by introducing a digital mask operator. Consequently, our MEMS RC is capable of both classification and forecasting, surpassing the capabilities of our previous non-delay-based architecture. Our method successfully processed word classification, with a 99.8% accuracy, and chaos forecasting, with a 0.0305 normalized mean square error (NMSE), demonstrating its adaptability for multi-scene data processing. This work is essential as it presents a novel MEMS RC with stiffness modulation, offering a simplified, efficient approach to integrate sensing and computing. Our approach has initiated edge computing, enabling emergent applications in MEMS for local computations.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"84"},"PeriodicalIF":7.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194282/pdf/","citationCount":"0","resultStr":"{\"title\":\"MEMS reservoir computing system with stiffness modulation for multi-scene data processing at the edge.\",\"authors\":\"Xiaowei Guo, Wuhao Yang, Xingyin Xiong, Zheng Wang, Xudong Zou\",\"doi\":\"10.1038/s41378-024-00701-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing (RC) is a bio-inspired neural network structure which can be implemented in hardware with ease. It has been applied across various fields such as memristors, and electrochemical reactions, among which the micro-electro-mechanical systems (MEMS) is supposed to be the closest to sensing and computing integration. While previous MEMS RCs have demonstrated their potential as reservoirs, the amplitude modulation mode was found to be inadequate for computing directly upon sensing. To achieve this objective, this paper introduces a novel MEMS reservoir computing system based on stiffness modulation, where natural signals directly influence the system stiffness as input. Under this innovative concept, information can be processed locally without the need for advanced data collection and pre-processing. We present an integrated RC system characterized by small volume and low power consumption, eliminating complicated setups in traditional MEMS RC for data discretization and transduction. Both simulation and experiment were conducted on our accelerometer. We performed nonlinearity tuning for the resonator and optimized the post-processing algorithm by introducing a digital mask operator. Consequently, our MEMS RC is capable of both classification and forecasting, surpassing the capabilities of our previous non-delay-based architecture. Our method successfully processed word classification, with a 99.8% accuracy, and chaos forecasting, with a 0.0305 normalized mean square error (NMSE), demonstrating its adaptability for multi-scene data processing. This work is essential as it presents a novel MEMS RC with stiffness modulation, offering a simplified, efficient approach to integrate sensing and computing. Our approach has initiated edge computing, enabling emergent applications in MEMS for local computations.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 \",\"pages\":\"84\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00701-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00701-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
MEMS reservoir computing system with stiffness modulation for multi-scene data processing at the edge.
Reservoir computing (RC) is a bio-inspired neural network structure which can be implemented in hardware with ease. It has been applied across various fields such as memristors, and electrochemical reactions, among which the micro-electro-mechanical systems (MEMS) is supposed to be the closest to sensing and computing integration. While previous MEMS RCs have demonstrated their potential as reservoirs, the amplitude modulation mode was found to be inadequate for computing directly upon sensing. To achieve this objective, this paper introduces a novel MEMS reservoir computing system based on stiffness modulation, where natural signals directly influence the system stiffness as input. Under this innovative concept, information can be processed locally without the need for advanced data collection and pre-processing. We present an integrated RC system characterized by small volume and low power consumption, eliminating complicated setups in traditional MEMS RC for data discretization and transduction. Both simulation and experiment were conducted on our accelerometer. We performed nonlinearity tuning for the resonator and optimized the post-processing algorithm by introducing a digital mask operator. Consequently, our MEMS RC is capable of both classification and forecasting, surpassing the capabilities of our previous non-delay-based architecture. Our method successfully processed word classification, with a 99.8% accuracy, and chaos forecasting, with a 0.0305 normalized mean square error (NMSE), demonstrating its adaptability for multi-scene data processing. This work is essential as it presents a novel MEMS RC with stiffness modulation, offering a simplified, efficient approach to integrate sensing and computing. Our approach has initiated edge computing, enabling emergent applications in MEMS for local computations.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.