橙皮甙/丝裂霉素复方制剂;一种能使 KG1a 细胞中的 PI3K/Akt 信号通路和抗凋亡因子失活的天然产品。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Fluorescence Pub Date : 2025-06-01 Epub Date: 2024-06-25 DOI:10.1007/s10895-024-03808-4
Sina Abroon, Mohammad Nouri, Majid Mahdavi
{"title":"橙皮甙/丝裂霉素复方制剂;一种能使 KG1a 细胞中的 PI3K/Akt 信号通路和抗凋亡因子失活的天然产品。","authors":"Sina Abroon, Mohammad Nouri, Majid Mahdavi","doi":"10.1007/s10895-024-03808-4","DOIUrl":null,"url":null,"abstract":"<p><p>AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 μM, 3) cells treated with 2 μM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC<sub>50</sub> of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"4005-4014"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesperidin/Salinomycin Combination; a Natural Product for Deactivation of the PI3K/Akt Signaling Pathway and Anti-Apoptotic Factors in KG1a Cells.\",\"authors\":\"Sina Abroon, Mohammad Nouri, Majid Mahdavi\",\"doi\":\"10.1007/s10895-024-03808-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 μM, 3) cells treated with 2 μM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC<sub>50</sub> of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"4005-4014\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03808-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03808-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

急性髓细胞性白血病是一种高度侵袭性的造血源恶性克隆疾病。橙皮甙是一种多酚苷,可激活细胞凋亡途径,而盐霉素是一种 k + 选择性离子拮抗剂。我们研究了橙皮甙和盐霉素如何诱导 KG1a 细胞产生促凋亡效应。细胞被分为四组:1)对照组(CRTL);2)经85 μM橙皮甙处理的细胞;3)经2 μM盐霉素处理的细胞;4)经盐霉素和橙皮甙联合处理的细胞。采用 MTT 法测定橙皮甙和盐霉素在 KG1a 细胞系中的 IC50。碘化丙啶染色法和流式细胞术用于分析细胞周期的分布。荧光显微镜和分光光度法评估了 ROS 的水平。此外,还通过实时 PCR 分析了 Akt、XIAP、Bad 和 FOXO1 基因的表达。与单独使用橙皮甙和盐霉素相比,橙皮甙/盐霉素更能降低 KG1a 白血病细胞的活力。在橙皮甙/盐霉素处理后,检测到凋亡细胞形状的变化和 ROS 水平的升高。我们的研究结果表明,Hesperidin/Salinomycin处理后,PI3K/AKT信号通路相关基因(AKT、PTEN和FOXO1)的表达与KG-1a细胞的破坏一致。此外,XIAP 和 BAD mRNA 也被调控以触发癌细胞凋亡。研究发现,橙皮甙和盐霉素能有效阻碍白血病癌细胞的 PI3K/Akt 信号通路。此外,橙皮甙和盐霉素的组合还有可能成为治疗急性髓性白血病的一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hesperidin/Salinomycin Combination; a Natural Product for Deactivation of the PI3K/Akt Signaling Pathway and Anti-Apoptotic Factors in KG1a Cells.

Hesperidin/Salinomycin Combination; a Natural Product for Deactivation of the PI3K/Akt Signaling Pathway and Anti-Apoptotic Factors in KG1a Cells.

AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 μM, 3) cells treated with 2 μM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC50 of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信