Ali Akbari, Mohadeseh Nemati, Zohreh Mehri Lighvan, Fereshteh Nazari Khanamiri, Jafar Rezaie, Yousef Rasmi
{"title":"二甲双胍衍生荧光量子点的合成:通过自噬途径对人类乳腺癌细胞的吸收、细胞毒性和抑制作用。","authors":"Ali Akbari, Mohadeseh Nemati, Zohreh Mehri Lighvan, Fereshteh Nazari Khanamiri, Jafar Rezaie, Yousef Rasmi","doi":"10.1186/s13036-024-00433-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer remains a challenge for physicians. Metformin, an antidiabetic drug, show promising anticancer properties against cancers. An emerging quantum dot (QD) material improves therapeutic agents' anticancer and imaging properties. QD are nano-sized particles with extreme application in nanotechnology captured by cells and accumulated inside cells, suggesting bioimaging and effective anticancer outcomes. In this study, a simple one-pot hydrothermal method was used to synthesize fluorescent metformin-derived carbon dots (M-CDs) and then investigated the cytotoxic effects and imaging features on two human breast cancer cell lines including, MCF-7 and MDA-MB-231 cells.</p><p><strong>Results: </strong>Results showed that M-CDs profoundly decreased the viability of both cancer cells. IC50 values showed that M-CDs were more cytotoxic than metformin either 24-48 h post-treatment. Cancer cells uptake M-CDs successfully, which causes morphological changes in cells and increased levels of intracellular ROS. The number of Oil Red O-positive cells and the expression of caspase-3 protein were increased in M-CDs treated cells. Authophagic factors including, AMPK, mTOR, and P62 were down-regulated, while p-AMPK, Becline-1, LC3 I, and LC3 II were up-regulated in M-CDs treated cells. Finally, M-CDs caused a decrease in the wound healing rate of cells.</p><p><strong>Conclusions: </strong>For the first, M-CDs were synthesized by simple one-pot hydrothermal treatment without further purification. M-CDs inhibited both breast cancer cells through modulating autophagy signalling.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"38"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197241/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of metformin-derived fluorescent quantum dots: uptake, cytotoxicity, and inhibition in human breast cancer cells through autophagy pathway.\",\"authors\":\"Ali Akbari, Mohadeseh Nemati, Zohreh Mehri Lighvan, Fereshteh Nazari Khanamiri, Jafar Rezaie, Yousef Rasmi\",\"doi\":\"10.1186/s13036-024-00433-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Breast cancer remains a challenge for physicians. Metformin, an antidiabetic drug, show promising anticancer properties against cancers. An emerging quantum dot (QD) material improves therapeutic agents' anticancer and imaging properties. QD are nano-sized particles with extreme application in nanotechnology captured by cells and accumulated inside cells, suggesting bioimaging and effective anticancer outcomes. In this study, a simple one-pot hydrothermal method was used to synthesize fluorescent metformin-derived carbon dots (M-CDs) and then investigated the cytotoxic effects and imaging features on two human breast cancer cell lines including, MCF-7 and MDA-MB-231 cells.</p><p><strong>Results: </strong>Results showed that M-CDs profoundly decreased the viability of both cancer cells. IC50 values showed that M-CDs were more cytotoxic than metformin either 24-48 h post-treatment. Cancer cells uptake M-CDs successfully, which causes morphological changes in cells and increased levels of intracellular ROS. The number of Oil Red O-positive cells and the expression of caspase-3 protein were increased in M-CDs treated cells. Authophagic factors including, AMPK, mTOR, and P62 were down-regulated, while p-AMPK, Becline-1, LC3 I, and LC3 II were up-regulated in M-CDs treated cells. Finally, M-CDs caused a decrease in the wound healing rate of cells.</p><p><strong>Conclusions: </strong>For the first, M-CDs were synthesized by simple one-pot hydrothermal treatment without further purification. M-CDs inhibited both breast cancer cells through modulating autophagy signalling.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"18 1\",\"pages\":\"38\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-024-00433-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00433-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synthesis of metformin-derived fluorescent quantum dots: uptake, cytotoxicity, and inhibition in human breast cancer cells through autophagy pathway.
Background: Breast cancer remains a challenge for physicians. Metformin, an antidiabetic drug, show promising anticancer properties against cancers. An emerging quantum dot (QD) material improves therapeutic agents' anticancer and imaging properties. QD are nano-sized particles with extreme application in nanotechnology captured by cells and accumulated inside cells, suggesting bioimaging and effective anticancer outcomes. In this study, a simple one-pot hydrothermal method was used to synthesize fluorescent metformin-derived carbon dots (M-CDs) and then investigated the cytotoxic effects and imaging features on two human breast cancer cell lines including, MCF-7 and MDA-MB-231 cells.
Results: Results showed that M-CDs profoundly decreased the viability of both cancer cells. IC50 values showed that M-CDs were more cytotoxic than metformin either 24-48 h post-treatment. Cancer cells uptake M-CDs successfully, which causes morphological changes in cells and increased levels of intracellular ROS. The number of Oil Red O-positive cells and the expression of caspase-3 protein were increased in M-CDs treated cells. Authophagic factors including, AMPK, mTOR, and P62 were down-regulated, while p-AMPK, Becline-1, LC3 I, and LC3 II were up-regulated in M-CDs treated cells. Finally, M-CDs caused a decrease in the wound healing rate of cells.
Conclusions: For the first, M-CDs were synthesized by simple one-pot hydrothermal treatment without further purification. M-CDs inhibited both breast cancer cells through modulating autophagy signalling.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.