{"title":"利用分离的基因假单胞菌减轻重金属铬、镉和铅的影响并促进 Vigna radiata L. 植物的生长。","authors":"Barkha Madhogaria, Sangeeta Banerjee, Sohini Chakraborty, Prasanta Dhak, Atreyee Kundu","doi":"10.1007/s10123-024-00546-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H<sub>2</sub>O<sub>2</sub> and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alleviation of heavy metals chromium, cadmium and lead and plant growth promotion in Vigna radiata L. plant using isolated Pseudomonas geniculata.\",\"authors\":\"Barkha Madhogaria, Sangeeta Banerjee, Sohini Chakraborty, Prasanta Dhak, Atreyee Kundu\",\"doi\":\"10.1007/s10123-024-00546-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H<sub>2</sub>O<sub>2</sub> and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00546-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00546-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Alleviation of heavy metals chromium, cadmium and lead and plant growth promotion in Vigna radiata L. plant using isolated Pseudomonas geniculata.
Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H2O2 and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.