Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold
{"title":"通过人工智能驱动的飞行员和空中交通管制员心理健康管理提升航空安全。","authors":"Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold","doi":"10.1089/cyber.2023.0737","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Aviation Safety through AI-Driven Mental Health Management for Pilots and Air Traffic Controllers.\",\"authors\":\"Krešimir Ćosić, Siniša Popović, Brenda K Wiederhold\",\"doi\":\"10.1089/cyber.2023.0737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1089/cyber.2023.0737\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1089/cyber.2023.0737","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhancing Aviation Safety through AI-Driven Mental Health Management for Pilots and Air Traffic Controllers.
This article provides an overview of the mental health challenges faced by pilots and air traffic controllers (ATCs), whose stressful professional lives may negatively impact global flight safety and security. The adverse effects of mental health disorders on their flight performance pose a particular safety risk, especially in sudden unexpected startle situations. Therefore, the early detection, prediction and prevention of mental health deterioration in pilots and ATCs, particularly among those at high risk, are crucial to minimize potential air crash incidents caused by human factors. Recent research in artificial intelligence (AI) demonstrates the potential of machine and deep learning, edge and cloud computing, virtual reality and wearable multimodal physiological sensors for monitoring and predicting mental health disorders. Longitudinal monitoring and analysis of pilots' and ATCs physiological, cognitive and behavioral states could help predict individuals at risk of undisclosed or emerging mental health disorders. Utilizing AI tools and methodologies to identify and select these individuals for preventive mental health training and interventions could be a promising and effective approach to preventing potential air crash accidents attributed to human factors and related mental health problems. Based on these insights, the article advocates for the design of a multidisciplinary mental healthcare ecosystem in modern aviation using AI tools and technologies, to foster more efficient and effective mental health management, thereby enhancing flight safety and security standards. This proposed ecosystem requires the collaboration of multidisciplinary experts, including psychologists, neuroscientists, physiologists, psychiatrists, etc. to address these challenges in modern aviation.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.