Gabrielle Aude Zbären, Manu Kapur, Sarah Nadine Meissner, Nicole Wenderoth
{"title":"推断被遮挡的射弹运动会改变视觉-前额-顶叶网络的连通性。","authors":"Gabrielle Aude Zbären, Manu Kapur, Sarah Nadine Meissner, Nicole Wenderoth","doi":"10.1007/s00429-024-02815-2","DOIUrl":null,"url":null,"abstract":"<p><p>Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1605-1615"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network.\",\"authors\":\"Gabrielle Aude Zbären, Manu Kapur, Sarah Nadine Meissner, Nicole Wenderoth\",\"doi\":\"10.1007/s00429-024-02815-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"1605-1615\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02815-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02815-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network.
Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.