拉沙病毒跨膜结构域在洗涤剂胶束中的融合前和融合后状态的分配。

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Patrick M. Keating, Jinwoo Lee
{"title":"拉沙病毒跨膜结构域在洗涤剂胶束中的融合前和融合后状态的分配。","authors":"Patrick M. Keating,&nbsp;Jinwoo Lee","doi":"10.1007/s12104-024-10184-4","DOIUrl":null,"url":null,"abstract":"<div><p>Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"165 - 169"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assignment of the Lassa virus transmembrane domain in the prefusion and postfusion states in detergent micelles\",\"authors\":\"Patrick M. Keating,&nbsp;Jinwoo Lee\",\"doi\":\"10.1007/s12104-024-10184-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"18 2\",\"pages\":\"165 - 169\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-024-10184-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10184-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

拉沙病毒(LASV)是禽流感病毒家族中最流行的成员,也是病毒性出血热--拉沙热的病原体。虽然每年都会在西非爆发,最近在全球范围内也出现了个别病例,但目前还没有治疗方法或疫苗。因此,LASV 对全球公共卫生构成了重大威胁。LASV 感染的关键步骤之一是通过将病毒膜与宿主细胞膜融合来传递其遗传物质。糖蛋白 2(GP2)的构象发生了重大变化,产生了不同的融合前和融合后结构状态,从而促进了这一过程。然而,要了解融合过程中跨膜结构域(TM)发生的变化,还缺少结构信息。此前,我们发现跨膜结构域(TM)发生了 pH 依赖性结构变化,导致螺旋延伸。在此,我们提供了 LASV TM 主干在融合前和融合后状态下的 1H、15N 和 13C 赋值。我们还提供了两个突变体(G429P 和 D432P)的 1H、15N 和 13C 赋值,这两个突变体阻止了这种螺旋延伸。这些结果将有助于了解 TM 在膜融合中的作用,并有助于设计治疗 LASV 感染的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assignment of the Lassa virus transmembrane domain in the prefusion and postfusion states in detergent micelles

Assignment of the Lassa virus transmembrane domain in the prefusion and postfusion states in detergent micelles

Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the 1H, 15N, and 13C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the 1H, 15N, and 13C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信