SyamSai Ravuri , Amani Al-Othman , Sameer Al-Asheh , Paul Nancarrow , Karnail Singh , Mohammad Al-Sayah
{"title":"为对称电化学超级电容器调谐碳化铌基电极的电化学电位窗口","authors":"SyamSai Ravuri , Amani Al-Othman , Sameer Al-Asheh , Paul Nancarrow , Karnail Singh , Mohammad Al-Sayah","doi":"10.1016/j.cscee.2024.100812","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical potential window for nano-sized Niobium carbide (NbC) based electrodes for supercapacitive energy storage applications was investigated. The nano-size NbC electrodes were fabricated and supported on carbon cloth (<span>CC</span>). The NbC@CC materials were assembled into a symmetric supercapacitor with a 1 M sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) as an electrolyte. The properties of the symmetric supercapacitor were evaluated for their electrochemical behavior, surface properties and morphology. The results showed that the nano-size NbC material was uniformly coated on the surface of CC. The electrochemical performance of the fabricated symmetric supercapacitor was evaluated in the range from -2V to + 2V and showed that the currents were spiked. To further understand the electrochemical behavior, the potentials were systematically reduced to +0.8V and evaluated. The charging-discharging behavior was studied systematically with the aim of avoiding the overestimation of the electrode performance. The specific capacitance was estimated to be around 27 F/g at the reduced potential window. Overall, this work presents a selection of the right potential window for the testing of the NbC based supercapacitor in such a way that avoids the overestimation of the potential window.</p></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"10 ","pages":"Article 100812"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666016424002068/pdfft?md5=cc4e5fffe2d07cffa75f8c69deef5563&pid=1-s2.0-S2666016424002068-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tuning the electrochemical potential window of Niobium carbide based electrodes for symmetric electrochemical supercapacitors\",\"authors\":\"SyamSai Ravuri , Amani Al-Othman , Sameer Al-Asheh , Paul Nancarrow , Karnail Singh , Mohammad Al-Sayah\",\"doi\":\"10.1016/j.cscee.2024.100812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrochemical potential window for nano-sized Niobium carbide (NbC) based electrodes for supercapacitive energy storage applications was investigated. The nano-size NbC electrodes were fabricated and supported on carbon cloth (<span>CC</span>). The NbC@CC materials were assembled into a symmetric supercapacitor with a 1 M sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) as an electrolyte. The properties of the symmetric supercapacitor were evaluated for their electrochemical behavior, surface properties and morphology. The results showed that the nano-size NbC material was uniformly coated on the surface of CC. The electrochemical performance of the fabricated symmetric supercapacitor was evaluated in the range from -2V to + 2V and showed that the currents were spiked. To further understand the electrochemical behavior, the potentials were systematically reduced to +0.8V and evaluated. The charging-discharging behavior was studied systematically with the aim of avoiding the overestimation of the electrode performance. The specific capacitance was estimated to be around 27 F/g at the reduced potential window. Overall, this work presents a selection of the right potential window for the testing of the NbC based supercapacitor in such a way that avoids the overestimation of the potential window.</p></div>\",\"PeriodicalId\":34388,\"journal\":{\"name\":\"Case Studies in Chemical and Environmental Engineering\",\"volume\":\"10 \",\"pages\":\"Article 100812\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666016424002068/pdfft?md5=cc4e5fffe2d07cffa75f8c69deef5563&pid=1-s2.0-S2666016424002068-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Chemical and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666016424002068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424002068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Tuning the electrochemical potential window of Niobium carbide based electrodes for symmetric electrochemical supercapacitors
The electrochemical potential window for nano-sized Niobium carbide (NbC) based electrodes for supercapacitive energy storage applications was investigated. The nano-size NbC electrodes were fabricated and supported on carbon cloth (CC). The NbC@CC materials were assembled into a symmetric supercapacitor with a 1 M sulfuric acid (H2SO4) as an electrolyte. The properties of the symmetric supercapacitor were evaluated for their electrochemical behavior, surface properties and morphology. The results showed that the nano-size NbC material was uniformly coated on the surface of CC. The electrochemical performance of the fabricated symmetric supercapacitor was evaluated in the range from -2V to + 2V and showed that the currents were spiked. To further understand the electrochemical behavior, the potentials were systematically reduced to +0.8V and evaluated. The charging-discharging behavior was studied systematically with the aim of avoiding the overestimation of the electrode performance. The specific capacitance was estimated to be around 27 F/g at the reduced potential window. Overall, this work presents a selection of the right potential window for the testing of the NbC based supercapacitor in such a way that avoids the overestimation of the potential window.