Tejaswini P. Patil , Vishakha S. Parkhe , Somnath S. Kundale , Rajanish K. Kamat , Tukaram D. Dongale , Rajendra S Patil , Arpita P. Tiwari
{"title":"基于反义寡核苷酸共轭金纳米结构的电化学生物传感器用于检测 SARS-CoV-2","authors":"Tejaswini P. Patil , Vishakha S. Parkhe , Somnath S. Kundale , Rajanish K. Kamat , Tukaram D. Dongale , Rajendra S Patil , Arpita P. Tiwari","doi":"10.1016/j.apsadv.2024.100618","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoconstructs of gold nanoparticles (AuNPs) conjugated with SARS-CoV-2 specific antisense oligonucleotides (ASO) have been utilized to develop sensitive electrochemical nucleic acid biosensor for the detection of SARS-CoV-2 RNA. AuNPs were prepared through a one-pot synthesis method by utilizing Poly-L-Lysine (PLL) biopolymer and as synthesised AuNP were characterized by various analytical techniques such as UV–Vis spectroscopy, X-ray Diffraction (XRD) analysis, Fourier Transform Infra-Red spectroscopy (FT-IR), zeta potential, and Transmission Electron Microscopy (TEM). Poly-L-Lysine functionalized AuNPs (PLL-AuNPs) nanoconstructs platform was employed for immobilization of SARS-CoV-2 specific antisense oligonucleotides (ASO-conjugated PLL-AuNPs) via electrostatic interactions. The PLL-AuNPs were drop casted on glassy carbon electrode (GCE) following immobilization of ASO for fabrication of electrochemical biosensor. The ASO-conjugated PLL-AuNPs nanoconstructs were characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The responsiveness of ASO-conjugated PLL-AuNPs nanoconstructs in presence SARS-CoV-2 RNA was monitored using the DPV, SWV and EIS technique, where methylene blue was employed as an electrochemical indicator for DNA-RNA hybridization detection. The biosensor exhibits a detection range for SARS-CoV-2 RNA infection ranging from 0 to 100 nM, with a limit of detection at 30.2 nM. The electrode, modified with ASO-conjugated PLL-AuNPs, was employed for the detection of SARS-CoV-2 RNA from clinical samples collected from COVID-19-positive individuals.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000461/pdfft?md5=227fac56f1013d066bea1266181a6daa&pid=1-s2.0-S2666523924000461-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Antisense oligonucleotide conjugated gold nanoconstructs-based electrochemical biosensor for detection of SARS-CoV-2\",\"authors\":\"Tejaswini P. Patil , Vishakha S. Parkhe , Somnath S. Kundale , Rajanish K. Kamat , Tukaram D. Dongale , Rajendra S Patil , Arpita P. Tiwari\",\"doi\":\"10.1016/j.apsadv.2024.100618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoconstructs of gold nanoparticles (AuNPs) conjugated with SARS-CoV-2 specific antisense oligonucleotides (ASO) have been utilized to develop sensitive electrochemical nucleic acid biosensor for the detection of SARS-CoV-2 RNA. AuNPs were prepared through a one-pot synthesis method by utilizing Poly-L-Lysine (PLL) biopolymer and as synthesised AuNP were characterized by various analytical techniques such as UV–Vis spectroscopy, X-ray Diffraction (XRD) analysis, Fourier Transform Infra-Red spectroscopy (FT-IR), zeta potential, and Transmission Electron Microscopy (TEM). Poly-L-Lysine functionalized AuNPs (PLL-AuNPs) nanoconstructs platform was employed for immobilization of SARS-CoV-2 specific antisense oligonucleotides (ASO-conjugated PLL-AuNPs) via electrostatic interactions. The PLL-AuNPs were drop casted on glassy carbon electrode (GCE) following immobilization of ASO for fabrication of electrochemical biosensor. The ASO-conjugated PLL-AuNPs nanoconstructs were characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The responsiveness of ASO-conjugated PLL-AuNPs nanoconstructs in presence SARS-CoV-2 RNA was monitored using the DPV, SWV and EIS technique, where methylene blue was employed as an electrochemical indicator for DNA-RNA hybridization detection. The biosensor exhibits a detection range for SARS-CoV-2 RNA infection ranging from 0 to 100 nM, with a limit of detection at 30.2 nM. The electrode, modified with ASO-conjugated PLL-AuNPs, was employed for the detection of SARS-CoV-2 RNA from clinical samples collected from COVID-19-positive individuals.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000461/pdfft?md5=227fac56f1013d066bea1266181a6daa&pid=1-s2.0-S2666523924000461-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Antisense oligonucleotide conjugated gold nanoconstructs-based electrochemical biosensor for detection of SARS-CoV-2
Nanoconstructs of gold nanoparticles (AuNPs) conjugated with SARS-CoV-2 specific antisense oligonucleotides (ASO) have been utilized to develop sensitive electrochemical nucleic acid biosensor for the detection of SARS-CoV-2 RNA. AuNPs were prepared through a one-pot synthesis method by utilizing Poly-L-Lysine (PLL) biopolymer and as synthesised AuNP were characterized by various analytical techniques such as UV–Vis spectroscopy, X-ray Diffraction (XRD) analysis, Fourier Transform Infra-Red spectroscopy (FT-IR), zeta potential, and Transmission Electron Microscopy (TEM). Poly-L-Lysine functionalized AuNPs (PLL-AuNPs) nanoconstructs platform was employed for immobilization of SARS-CoV-2 specific antisense oligonucleotides (ASO-conjugated PLL-AuNPs) via electrostatic interactions. The PLL-AuNPs were drop casted on glassy carbon electrode (GCE) following immobilization of ASO for fabrication of electrochemical biosensor. The ASO-conjugated PLL-AuNPs nanoconstructs were characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The responsiveness of ASO-conjugated PLL-AuNPs nanoconstructs in presence SARS-CoV-2 RNA was monitored using the DPV, SWV and EIS technique, where methylene blue was employed as an electrochemical indicator for DNA-RNA hybridization detection. The biosensor exhibits a detection range for SARS-CoV-2 RNA infection ranging from 0 to 100 nM, with a limit of detection at 30.2 nM. The electrode, modified with ASO-conjugated PLL-AuNPs, was employed for the detection of SARS-CoV-2 RNA from clinical samples collected from COVID-19-positive individuals.