{"title":"薄层脂肪抑制单次 T2 加权磁共振成像与深度学习图像重建作为胰腺评估方案的实用性。","authors":"Ryuji Shimada, Keitaro Sofue, Yoshiko Ueno, Tetsuya Wakayama, Takeru Yamaguchi, Eisuke Ueshima, Akiko Kusaka, Masatoshi Hori, Takamichi Murakami","doi":"10.2463/mrms.mp.2024-0017","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the utility of thin-slice fat-suppressed single-shot T2-weighted imaging (T2WI) with deep learning image reconstruction (DLIR) and conventional fast spin-echo T2WI with DLIR for evaluating pancreatic protocol.</p><p><strong>Methods: </strong>This retrospective study included 42 patients (mean age, 70.2 years) with pancreatic cancer who underwent gadoxetic acid-enhanced MRI. Three fat-suppressed T2WI, including conventional fast-spin echo with 6 mm thickness (FSE 6 mm), single-shot fast-spin echo with 6 mm and 3 mm thickness (SSFSE 6 mm and SSFSE 3 mm), were acquired for each patient. For quantitative analysis, the SNRs of the upper abdominal organs were calculated between images with and without DLIR. The pancreas-to-lesion contrast on DLIR images was also calculated. For qualitative analysis, two abdominal radiologists independently scored the image quality on a 5-point scale in the FSE 6 mm, SSFSE 6 mm, and SSFSE 3 mm with DLIR.</p><p><strong>Results: </strong>The SNRs significantly improved among the three T2-weighted images with DLIR compared to those without DLIR in all patients (P < 0.001). The pancreas-to-lesion contrast of SSFSE 3 mm was higher than those of the FSE 6 mm (P < 0.001) and tended to be higher than SSFSE 6 mm (P = 0.07). SSFSE 3 mm had the highest image qualities regarding pancreas edge sharpness, pancreatic duct clarity, and overall image quality, followed by SSFSE 6 mm and FSE 6 mm (P < 0.0001).</p><p><strong>Conclusion: </strong>SSFSE 3 mm with DLIR demonstrated significant improvements in SNRs of the pancreas, pancreas-to-lesion contrast, and image quality more efficiently than did SSFSE 6 mm and FSE 6 mm. Thin-slice fat-suppressed single-shot T2WI with DLIR can be easily implemented for pancreatic MR protocol.</p>","PeriodicalId":94126,"journal":{"name":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.\",\"authors\":\"Ryuji Shimada, Keitaro Sofue, Yoshiko Ueno, Tetsuya Wakayama, Takeru Yamaguchi, Eisuke Ueshima, Akiko Kusaka, Masatoshi Hori, Takamichi Murakami\",\"doi\":\"10.2463/mrms.mp.2024-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare the utility of thin-slice fat-suppressed single-shot T2-weighted imaging (T2WI) with deep learning image reconstruction (DLIR) and conventional fast spin-echo T2WI with DLIR for evaluating pancreatic protocol.</p><p><strong>Methods: </strong>This retrospective study included 42 patients (mean age, 70.2 years) with pancreatic cancer who underwent gadoxetic acid-enhanced MRI. Three fat-suppressed T2WI, including conventional fast-spin echo with 6 mm thickness (FSE 6 mm), single-shot fast-spin echo with 6 mm and 3 mm thickness (SSFSE 6 mm and SSFSE 3 mm), were acquired for each patient. For quantitative analysis, the SNRs of the upper abdominal organs were calculated between images with and without DLIR. The pancreas-to-lesion contrast on DLIR images was also calculated. For qualitative analysis, two abdominal radiologists independently scored the image quality on a 5-point scale in the FSE 6 mm, SSFSE 6 mm, and SSFSE 3 mm with DLIR.</p><p><strong>Results: </strong>The SNRs significantly improved among the three T2-weighted images with DLIR compared to those without DLIR in all patients (P < 0.001). The pancreas-to-lesion contrast of SSFSE 3 mm was higher than those of the FSE 6 mm (P < 0.001) and tended to be higher than SSFSE 6 mm (P = 0.07). SSFSE 3 mm had the highest image qualities regarding pancreas edge sharpness, pancreatic duct clarity, and overall image quality, followed by SSFSE 6 mm and FSE 6 mm (P < 0.0001).</p><p><strong>Conclusion: </strong>SSFSE 3 mm with DLIR demonstrated significant improvements in SNRs of the pancreas, pancreas-to-lesion contrast, and image quality more efficiently than did SSFSE 6 mm and FSE 6 mm. Thin-slice fat-suppressed single-shot T2WI with DLIR can be easily implemented for pancreatic MR protocol.</p>\",\"PeriodicalId\":94126,\"journal\":{\"name\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.mp.2024-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2024-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.
Purpose: To compare the utility of thin-slice fat-suppressed single-shot T2-weighted imaging (T2WI) with deep learning image reconstruction (DLIR) and conventional fast spin-echo T2WI with DLIR for evaluating pancreatic protocol.
Methods: This retrospective study included 42 patients (mean age, 70.2 years) with pancreatic cancer who underwent gadoxetic acid-enhanced MRI. Three fat-suppressed T2WI, including conventional fast-spin echo with 6 mm thickness (FSE 6 mm), single-shot fast-spin echo with 6 mm and 3 mm thickness (SSFSE 6 mm and SSFSE 3 mm), were acquired for each patient. For quantitative analysis, the SNRs of the upper abdominal organs were calculated between images with and without DLIR. The pancreas-to-lesion contrast on DLIR images was also calculated. For qualitative analysis, two abdominal radiologists independently scored the image quality on a 5-point scale in the FSE 6 mm, SSFSE 6 mm, and SSFSE 3 mm with DLIR.
Results: The SNRs significantly improved among the three T2-weighted images with DLIR compared to those without DLIR in all patients (P < 0.001). The pancreas-to-lesion contrast of SSFSE 3 mm was higher than those of the FSE 6 mm (P < 0.001) and tended to be higher than SSFSE 6 mm (P = 0.07). SSFSE 3 mm had the highest image qualities regarding pancreas edge sharpness, pancreatic duct clarity, and overall image quality, followed by SSFSE 6 mm and FSE 6 mm (P < 0.0001).
Conclusion: SSFSE 3 mm with DLIR demonstrated significant improvements in SNRs of the pancreas, pancreas-to-lesion contrast, and image quality more efficiently than did SSFSE 6 mm and FSE 6 mm. Thin-slice fat-suppressed single-shot T2WI with DLIR can be easily implemented for pancreatic MR protocol.