评估用于早产儿视网膜病变深度学习分类的彩色眼底照片的光谱有效性。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-07-01 Epub Date: 2024-06-18 DOI:10.1117/1.JBO.29.7.076001
Behrouz Ebrahimi, David Le, Mansour Abtahi, Albert K Dadzie, Alfa Rossi, Mojtaba Rahimi, Taeyoon Son, Susan Ostmo, J Peter Campbell, R V Paul Chan, Xincheng Yao
{"title":"评估用于早产儿视网膜病变深度学习分类的彩色眼底照片的光谱有效性。","authors":"Behrouz Ebrahimi, David Le, Mansour Abtahi, Albert K Dadzie, Alfa Rossi, Mojtaba Rahimi, Taeyoon Son, Susan Ostmo, J Peter Campbell, R V Paul Chan, Xincheng Yao","doi":"10.1117/1.JBO.29.7.076001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the efficacy and safety of utilizing longer wavelengths, such as red or green for enhanced depth information and improved diagnostic capabilities.</p><p><strong>Aim: </strong>This study aims to assess the spectral effectiveness in color fundus photography for the deep learning classification of ROP.</p><p><strong>Approach: </strong>A convolutional neural network end-to-end classifier was utilized for deep learning classification of normal, stage 1, stage 2, and stage 3 ROP fundus images. The classification performances with individual-color-channel inputs, i.e., red, green, and blue, and multi-color-channel fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared.</p><p><strong>Results: </strong>For individual-color-channel inputs, similar performance was observed for green channel (88.00% accuracy, 76.00% sensitivity, and 92.00% specificity) and red channel (87.25% accuracy, 74.50% sensitivity, and 91.50% specificity), which is substantially outperforming the blue channel (78.25% accuracy, 56.50% sensitivity, and 85.50% specificity). For multi-color-channel fusion options, the early-fusion and intermediate-fusion architecture showed almost the same performance when compared to the green/red channel input, and they outperformed the late-fusion architecture.</p><p><strong>Conclusions: </strong>This study reveals that the classification of ROP stages can be effectively achieved using either the green or red image alone. This finding enables the exclusion of blue images, acknowledged for their increased susceptibility to light toxicity.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 7","pages":"076001"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing spectral effectiveness in color fundus photography for deep learning classification of retinopathy of prematurity.\",\"authors\":\"Behrouz Ebrahimi, David Le, Mansour Abtahi, Albert K Dadzie, Alfa Rossi, Mojtaba Rahimi, Taeyoon Son, Susan Ostmo, J Peter Campbell, R V Paul Chan, Xincheng Yao\",\"doi\":\"10.1117/1.JBO.29.7.076001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the efficacy and safety of utilizing longer wavelengths, such as red or green for enhanced depth information and improved diagnostic capabilities.</p><p><strong>Aim: </strong>This study aims to assess the spectral effectiveness in color fundus photography for the deep learning classification of ROP.</p><p><strong>Approach: </strong>A convolutional neural network end-to-end classifier was utilized for deep learning classification of normal, stage 1, stage 2, and stage 3 ROP fundus images. The classification performances with individual-color-channel inputs, i.e., red, green, and blue, and multi-color-channel fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared.</p><p><strong>Results: </strong>For individual-color-channel inputs, similar performance was observed for green channel (88.00% accuracy, 76.00% sensitivity, and 92.00% specificity) and red channel (87.25% accuracy, 74.50% sensitivity, and 91.50% specificity), which is substantially outperforming the blue channel (78.25% accuracy, 56.50% sensitivity, and 85.50% specificity). For multi-color-channel fusion options, the early-fusion and intermediate-fusion architecture showed almost the same performance when compared to the green/red channel input, and they outperformed the late-fusion architecture.</p><p><strong>Conclusions: </strong>This study reveals that the classification of ROP stages can be effectively achieved using either the green or red image alone. This finding enables the exclusion of blue images, acknowledged for their increased susceptibility to light toxicity.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 7\",\"pages\":\"076001\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.7.076001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.7.076001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:早产儿视网膜病变(ROP)对全球儿童视力构成重大威胁,因此必须采取有效的筛查策略。本研究探讨了眼底成像中的彩色通道对早产儿视网膜病变诊断的影响,强调了利用较长波长(如红色或绿色)增强深度信息和提高诊断能力的有效性和安全性:方法:利用卷积神经网络端到端分类器对正常、1期、2期和3期ROP眼底图像进行深度学习分类。定量比较了单色通道输入(即红、绿、蓝)和多色通道融合架构(包括早期融合、中期融合和晚期融合)的分类性能:对于单色通道输入,绿色通道(88.00% 的准确率、76.00% 的灵敏度和 92.00% 的特异性)和红色通道(87.25% 的准确率、74.50% 的灵敏度和 91.50% 的特异性)的表现相似,而蓝色通道(78.25% 的准确率、56.50% 的灵敏度和 85.50% 的特异性)的表现则要好得多。对于多色通道融合选项,早期融合和中期融合架构与绿色/红色通道输入相比表现几乎相同,而它们的表现优于后期融合架构:这项研究表明,仅使用绿色或红色图像就能有效地对 ROP 阶段进行分类。结论:这项研究表明,仅使用绿色或红色图像就能有效地对 ROP 阶段进行分类。这一发现使得人们可以排除蓝色图像,因为蓝色图像被认为更容易受到光毒性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing spectral effectiveness in color fundus photography for deep learning classification of retinopathy of prematurity.

Significance: Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the efficacy and safety of utilizing longer wavelengths, such as red or green for enhanced depth information and improved diagnostic capabilities.

Aim: This study aims to assess the spectral effectiveness in color fundus photography for the deep learning classification of ROP.

Approach: A convolutional neural network end-to-end classifier was utilized for deep learning classification of normal, stage 1, stage 2, and stage 3 ROP fundus images. The classification performances with individual-color-channel inputs, i.e., red, green, and blue, and multi-color-channel fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared.

Results: For individual-color-channel inputs, similar performance was observed for green channel (88.00% accuracy, 76.00% sensitivity, and 92.00% specificity) and red channel (87.25% accuracy, 74.50% sensitivity, and 91.50% specificity), which is substantially outperforming the blue channel (78.25% accuracy, 56.50% sensitivity, and 85.50% specificity). For multi-color-channel fusion options, the early-fusion and intermediate-fusion architecture showed almost the same performance when compared to the green/red channel input, and they outperformed the late-fusion architecture.

Conclusions: This study reveals that the classification of ROP stages can be effectively achieved using either the green or red image alone. This finding enables the exclusion of blue images, acknowledged for their increased susceptibility to light toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信