MiR-199a-5p 缺陷通过靶向 HIF-1α 和 E2F3 调节 ASMCs 功能促进外周动脉疾病中的动脉再狭窄

IF 2.8 3区 医学 Q2 PERIPHERAL VASCULAR DISEASE
Duan Liu, Yexiang Jing, Guiyan Peng, Litai Wei, Liang Zheng, Guangqi Chang, Mian Wang
{"title":"MiR-199a-5p 缺陷通过靶向 HIF-1α 和 E2F3 调节 ASMCs 功能促进外周动脉疾病中的动脉再狭窄","authors":"Duan Liu, Yexiang Jing, Guiyan Peng, Litai Wei, Liang Zheng, Guangqi Chang, Mian Wang","doi":"10.2174/0115701611280634240616062413","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS.</p><p><strong>Objective: </strong>This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS.</p><p><strong>Methods: </strong>Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia.</p><p><strong>Results: </strong>MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3.</p><p><strong>Conclusion: </strong>MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.</p>","PeriodicalId":11278,"journal":{"name":"Current vascular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-199a-5p Deficiency Promotes Artery Restenosis in Peripheral Artery Disease by Regulating ASMCs Function via Targeting HIF-1α and E2F3.\",\"authors\":\"Duan Liu, Yexiang Jing, Guiyan Peng, Litai Wei, Liang Zheng, Guangqi Chang, Mian Wang\",\"doi\":\"10.2174/0115701611280634240616062413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS.</p><p><strong>Objective: </strong>This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS.</p><p><strong>Methods: </strong>Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia.</p><p><strong>Results: </strong>MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3.</p><p><strong>Conclusion: </strong>MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.</p>\",\"PeriodicalId\":11278,\"journal\":{\"name\":\"Current vascular pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current vascular pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701611280634240616062413\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701611280634240616062413","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

背景:在治疗外周动脉疾病(PAD)的腔内血管成形术后,再狭窄(RS)会导致反复缺血和截肢的可能性,这是一个令人严重关切的问题。通过 microRNA 微阵列分析,该研究检测到与 RS 相关的动脉平滑肌细胞(ASMCs)中 miR-199a-5p 的显著下调:本研究旨在探索 miR-199a-5p 在 RS 中的可能功能和潜在机制:从健康人和 PAD 或 RS 患者的股动脉中提取原代 ASMC。采用 qRT-PCR 和原位杂交技术评估 miR-199a-5p 的表达水平。为了研究 miR-199a-5p 的影响,研究人员进行了一系列实验,包括流式细胞术、TUNEL 试验、EdU 试验、CCK8 试验、Transwell 试验和伤口闭合试验。实验采用了大鼠颈动脉球囊损伤模型,以阐明 miR-199a-5p 缓解新内膜增生的机制:结果:miR-199a-5p在RS患者中表现出下调,并主要在ASMCs中表达。提高 miR-199a-5p 的表达可抑制 ASMC 的增殖和迁移。免疫组化和双荧光素酶报告实验发现,RS表现出HIF-1α和E2F3的表达水平升高,并确定它们是受miR-199a-5p调控的靶基因。将携带 HIF-1α 和 E2F3 的慢病毒与 miR-199a-5p 共同转染,进一步阐明了它们在 miR-199a-5p 介导的细胞反应中的作用。在体内,通过慢病毒递送 miR-199a-5p,靶向 HIF-1α 和 E2F3 可减轻血管成形术后新生内膜的形成:MiR-199a-5p通过调控HIF-1α和E2F3抑制ASMC的增殖和迁移,从而缓解了RS的病情,因此有望成为RS的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiR-199a-5p Deficiency Promotes Artery Restenosis in Peripheral Artery Disease by Regulating ASMCs Function via Targeting HIF-1α and E2F3.

Background: Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS.

Objective: This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS.

Methods: Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia.

Results: MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3.

Conclusion: MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current vascular pharmacology
Current vascular pharmacology 医学-外周血管病
CiteScore
9.20
自引率
4.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Current Vascular Pharmacology publishes clinical and research-based reviews/mini-reviews, original research articles, letters, debates, drug clinical trial studies and guest edited issues to update all those concerned with the treatment of vascular disease, bridging the gap between clinical practice and ongoing research. Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials. Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信