Julia Dupin, Cynthia Hong-Wa, Myriam Gaudeul, Guillaume Besnard
{"title":"橄榄科(Oleaceae)的系统发育和生物地理学。","authors":"Julia Dupin, Cynthia Hong-Wa, Myriam Gaudeul, Guillaume Besnard","doi":"10.1093/aob/mcae100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We also aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant family.</p><p><strong>Methods: </strong>Using a sampling of 298 species out of ~750, the largest in a phylogenetic study of Oleaceae thus far, with a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis); climatic fluctuations (climate-only hypothesis); combined effects of QTP uplift and climate (QTP-climate hypothesis); and no effects (null hypothesis)] in explaining these disjunct distributions.</p><p><strong>Key results: </strong>We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographical analyses support the QTP-climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ~86 Mya and the role of Tropical Asia as a main source of species dispersals.</p><p><strong>Conclusion: </strong>Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the largest and most undersampled genera of the family (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographical analyses across spatial scales and geological times.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"577-592"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523611/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenetics and biogeography of the olive family (Oleaceae).\",\"authors\":\"Julia Dupin, Cynthia Hong-Wa, Myriam Gaudeul, Guillaume Besnard\",\"doi\":\"10.1093/aob/mcae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We also aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant family.</p><p><strong>Methods: </strong>Using a sampling of 298 species out of ~750, the largest in a phylogenetic study of Oleaceae thus far, with a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis); climatic fluctuations (climate-only hypothesis); combined effects of QTP uplift and climate (QTP-climate hypothesis); and no effects (null hypothesis)] in explaining these disjunct distributions.</p><p><strong>Key results: </strong>We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographical analyses support the QTP-climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ~86 Mya and the role of Tropical Asia as a main source of species dispersals.</p><p><strong>Conclusion: </strong>Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the largest and most undersampled genera of the family (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographical analyses across spatial scales and geological times.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"577-592\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae100\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae100","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phylogenetics and biogeography of the olive family (Oleaceae).
Background and aims: Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We also aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant family.
Methods: Using a sampling of 298 species out of ~750, the largest in a phylogenetic study of Oleaceae thus far, with a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis); climatic fluctuations (climate-only hypothesis); combined effects of QTP uplift and climate (QTP-climate hypothesis); and no effects (null hypothesis)] in explaining these disjunct distributions.
Key results: We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographical analyses support the QTP-climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ~86 Mya and the role of Tropical Asia as a main source of species dispersals.
Conclusion: Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the largest and most undersampled genera of the family (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographical analyses across spatial scales and geological times.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.