Mingxuan Yu , Xin Song , Jiaqi Li , Chao Zhou , Li Liu , Guangfeng Wu
{"title":"封装薄膜:多组分生物基水性聚氨酯在自然环境中的降解机理研究","authors":"Mingxuan Yu , Xin Song , Jiaqi Li , Chao Zhou , Li Liu , Guangfeng Wu","doi":"10.1016/j.eurpolymj.2024.113228","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the impact of different ratios of castor oil (CO) and polycarbonate diol (PCDL) mixed soft segments, as well as the introduction of sodium 2-[(2-aminoethyl)amino]ethanesulphonate (AAS-Na) salt, on the biodegradable waterborne polyurethane (WPU) was investigated. Firstly, various waterborne polyurethanes with different mixed soft segments were prepared by adjusting the ratios of castor oil and polycarbonate diol. Subsequently, varying amounts of AAS-Na salt were introduced to assess their influence on the polymer properties. The results indicated that the ratio of CO to PCDL significantly affected the mechanical properties and biodegradability of WPU. As the ratio decreased from 10:0 to 6:4, the tensile strength of WPU films decreased from 18 MPa to 11 MPa, while the elongation at break increased from 56 % to 258 %. Furthermore, the addition of AAS salt improved the water absorption and biodegradation rate of the material. When the ratio of CO to PCDL within the system is 10:0 and the molar content of AAS-Na is 20 mol%, the sample exhibits optimal water absorption of 132.12 % after 48 h and biodegradability of 30.58 % after 28 days. The degradation mechanism was preliminarily explored using Fourier-transform infrared spectroscopy. In conclusion, by adjusting the ratios of castor oil, polycarbonate diol, and AAS salt, a series of biodegradable waterborne polyurethanes with excellent performance were obtained. This study demonstrates the feasibility of developing biodegradable packaging materials using bio-based waterborne polyurethanes as the main component.</p></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"215 ","pages":"Article 113228"},"PeriodicalIF":5.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encapsulation films: Investigation into the degradation mechanism of multicomponent bio-based waterborne polyurethane in natural environments\",\"authors\":\"Mingxuan Yu , Xin Song , Jiaqi Li , Chao Zhou , Li Liu , Guangfeng Wu\",\"doi\":\"10.1016/j.eurpolymj.2024.113228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the impact of different ratios of castor oil (CO) and polycarbonate diol (PCDL) mixed soft segments, as well as the introduction of sodium 2-[(2-aminoethyl)amino]ethanesulphonate (AAS-Na) salt, on the biodegradable waterborne polyurethane (WPU) was investigated. Firstly, various waterborne polyurethanes with different mixed soft segments were prepared by adjusting the ratios of castor oil and polycarbonate diol. Subsequently, varying amounts of AAS-Na salt were introduced to assess their influence on the polymer properties. The results indicated that the ratio of CO to PCDL significantly affected the mechanical properties and biodegradability of WPU. As the ratio decreased from 10:0 to 6:4, the tensile strength of WPU films decreased from 18 MPa to 11 MPa, while the elongation at break increased from 56 % to 258 %. Furthermore, the addition of AAS salt improved the water absorption and biodegradation rate of the material. When the ratio of CO to PCDL within the system is 10:0 and the molar content of AAS-Na is 20 mol%, the sample exhibits optimal water absorption of 132.12 % after 48 h and biodegradability of 30.58 % after 28 days. The degradation mechanism was preliminarily explored using Fourier-transform infrared spectroscopy. In conclusion, by adjusting the ratios of castor oil, polycarbonate diol, and AAS salt, a series of biodegradable waterborne polyurethanes with excellent performance were obtained. This study demonstrates the feasibility of developing biodegradable packaging materials using bio-based waterborne polyurethanes as the main component.</p></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"215 \",\"pages\":\"Article 113228\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724004890\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724004890","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Encapsulation films: Investigation into the degradation mechanism of multicomponent bio-based waterborne polyurethane in natural environments
In this study, the impact of different ratios of castor oil (CO) and polycarbonate diol (PCDL) mixed soft segments, as well as the introduction of sodium 2-[(2-aminoethyl)amino]ethanesulphonate (AAS-Na) salt, on the biodegradable waterborne polyurethane (WPU) was investigated. Firstly, various waterborne polyurethanes with different mixed soft segments were prepared by adjusting the ratios of castor oil and polycarbonate diol. Subsequently, varying amounts of AAS-Na salt were introduced to assess their influence on the polymer properties. The results indicated that the ratio of CO to PCDL significantly affected the mechanical properties and biodegradability of WPU. As the ratio decreased from 10:0 to 6:4, the tensile strength of WPU films decreased from 18 MPa to 11 MPa, while the elongation at break increased from 56 % to 258 %. Furthermore, the addition of AAS salt improved the water absorption and biodegradation rate of the material. When the ratio of CO to PCDL within the system is 10:0 and the molar content of AAS-Na is 20 mol%, the sample exhibits optimal water absorption of 132.12 % after 48 h and biodegradability of 30.58 % after 28 days. The degradation mechanism was preliminarily explored using Fourier-transform infrared spectroscopy. In conclusion, by adjusting the ratios of castor oil, polycarbonate diol, and AAS salt, a series of biodegradable waterborne polyurethanes with excellent performance were obtained. This study demonstrates the feasibility of developing biodegradable packaging materials using bio-based waterborne polyurethanes as the main component.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.