基于木质纤维素生物质底物成分的厌氧降解动力学预测

Q1 Environmental Science
Karim Alrefaey , Jana Schultz , Marvin Scherzinger , Mahmoud A. Nosier , Amr Y. Elbanhawy
{"title":"基于木质纤维素生物质底物成分的厌氧降解动力学预测","authors":"Karim Alrefaey ,&nbsp;Jana Schultz ,&nbsp;Marvin Scherzinger ,&nbsp;Mahmoud A. Nosier ,&nbsp;Amr Y. Elbanhawy","doi":"10.1016/j.biteb.2024.101882","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive biochemical predictive approach for assessing biogas production kinetics across ten lignocellulosic substrates in batch operation. The methodology employs a range of kinetic and regression models, all grounded in the substrates' chemical composition. Among the kinetic models, the cone model demonstrated superior performance, achieving an average error of 1.67 % in describing biogas production from all substrates. The quadratic Monod type model followed closely, with an error of 1.96 %. Among the regression models, on the other hand, the logistic function model exhibited enhanced predictive capabilities, yielding an average error of 6.02 %, while the Chen and Hashimoto one showed a higher error of 60.54 %. The findings underscore the potential of precise biogas production forecasting and tracking the daily rates of gas generation, rather than solely relying on cumulative gas yields at the end of the process.</p></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of anaerobic degradation kinetics based on substrate composition of lignocellulosic biomass\",\"authors\":\"Karim Alrefaey ,&nbsp;Jana Schultz ,&nbsp;Marvin Scherzinger ,&nbsp;Mahmoud A. Nosier ,&nbsp;Amr Y. Elbanhawy\",\"doi\":\"10.1016/j.biteb.2024.101882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive biochemical predictive approach for assessing biogas production kinetics across ten lignocellulosic substrates in batch operation. The methodology employs a range of kinetic and regression models, all grounded in the substrates' chemical composition. Among the kinetic models, the cone model demonstrated superior performance, achieving an average error of 1.67 % in describing biogas production from all substrates. The quadratic Monod type model followed closely, with an error of 1.96 %. Among the regression models, on the other hand, the logistic function model exhibited enhanced predictive capabilities, yielding an average error of 6.02 %, while the Chen and Hashimoto one showed a higher error of 60.54 %. The findings underscore the potential of precise biogas production forecasting and tracking the daily rates of gas generation, rather than solely relying on cumulative gas yields at the end of the process.</p></div>\",\"PeriodicalId\":8947,\"journal\":{\"name\":\"Bioresource Technology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589014X24001233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X24001233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种全面的生化预测方法,用于评估批量操作中十种木质纤维素基质的沼气生产动力学。该方法采用了一系列动力学和回归模型,所有模型均以基质的化学成分为基础。在动力学模型中,圆锥模型表现出卓越的性能,在描述所有基质的沼气产量时,平均误差为 1.67%。二次莫诺模型紧随其后,误差为 1.96%。另一方面,在回归模型中,逻辑函数模型的预测能力更强,平均误差为 6.02%,而 Chen 和 Hashimoto 模型的误差则更大,达到 60.54%。这些发现强调了精确预测沼气产量和跟踪每日产气量的潜力,而不是仅仅依赖于过程结束时的累积产气量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of anaerobic degradation kinetics based on substrate composition of lignocellulosic biomass

Prediction of anaerobic degradation kinetics based on substrate composition of lignocellulosic biomass

This study presents a comprehensive biochemical predictive approach for assessing biogas production kinetics across ten lignocellulosic substrates in batch operation. The methodology employs a range of kinetic and regression models, all grounded in the substrates' chemical composition. Among the kinetic models, the cone model demonstrated superior performance, achieving an average error of 1.67 % in describing biogas production from all substrates. The quadratic Monod type model followed closely, with an error of 1.96 %. Among the regression models, on the other hand, the logistic function model exhibited enhanced predictive capabilities, yielding an average error of 6.02 %, while the Chen and Hashimoto one showed a higher error of 60.54 %. The findings underscore the potential of precise biogas production forecasting and tracking the daily rates of gas generation, rather than solely relying on cumulative gas yields at the end of the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信