关于 p2 阶子群的 p 特性赫米蒂曲线的伽罗瓦子覆盖率

IF 1.2 3区 数学 Q1 MATHEMATICS
Barbara Gatti , Gábor Korchmáros
{"title":"关于 p2 阶子群的 p 特性赫米蒂曲线的伽罗瓦子覆盖率","authors":"Barbara Gatti ,&nbsp;Gábor Korchmáros","doi":"10.1016/j.ffa.2024.102450","DOIUrl":null,"url":null,"abstract":"<div><p>A (projective, geometrically irreducible, non-singular) curve <span><math><mi>X</mi></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is <em>maximal</em> if the number <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of its <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational points attains the Hasse-Weil upper bound, that is <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>g</mi><mi>q</mi><mo>+</mo><mn>1</mn></math></span> where <span><math><mi>g</mi></math></span> is the genus of <span><math><mi>X</mi></math></span>. An important question, also motivated by applications to algebraic-geometry codes, is to find explicit equations for maximal curves. For a few curves which are Galois covered of the Hermitian curve, this has been done so far ad hoc, in particular in the cases where the Galois group has prime order. In this paper we obtain explicit equations of all Galois covers of the Hermitian curve with Galois group of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Doing so we also determine the <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-isomorphism classes of such curves and describe their full <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-automorphism groups.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000893/pdfft?md5=4d7dc430a08ae7fb7ea1e9c89490e861&pid=1-s2.0-S1071579724000893-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Galois subcovers of the Hermitian curve in characteristic p with respect to subgroups of order p2\",\"authors\":\"Barbara Gatti ,&nbsp;Gábor Korchmáros\",\"doi\":\"10.1016/j.ffa.2024.102450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A (projective, geometrically irreducible, non-singular) curve <span><math><mi>X</mi></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is <em>maximal</em> if the number <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of its <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational points attains the Hasse-Weil upper bound, that is <span><math><msub><mrow><mi>N</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>g</mi><mi>q</mi><mo>+</mo><mn>1</mn></math></span> where <span><math><mi>g</mi></math></span> is the genus of <span><math><mi>X</mi></math></span>. An important question, also motivated by applications to algebraic-geometry codes, is to find explicit equations for maximal curves. For a few curves which are Galois covered of the Hermitian curve, this has been done so far ad hoc, in particular in the cases where the Galois group has prime order. In this paper we obtain explicit equations of all Galois covers of the Hermitian curve with Galois group of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Doing so we also determine the <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-isomorphism classes of such curves and describe their full <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-automorphism groups.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000893/pdfft?md5=4d7dc430a08ae7fb7ea1e9c89490e861&pid=1-s2.0-S1071579724000893-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000893\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000893","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果在有限域 Fq2 上定义的(投影的、几何上不可还原的、非奇异的)曲线 X 的 Fq2 有理点数 Nq2 达到哈塞-韦尔(Hasse-Weil)上限,即 Nq2=q2+2gq+1 其中 g 是 X 的属。迄今为止,对于赫尔墨斯曲线的伽罗瓦覆盖的一些曲线,特别是在伽罗瓦群有素数阶的情况下,人们已经临时完成了这一工作。在本文中,我们得到了赫尔墨斯曲线的所有伽罗华盖的明确方程,这些曲线的伽罗华群为 p2 阶,其中 p 是 Fq2 的特征。为此,我们还确定了这些曲线的 Fq2-同构类,并描述了它们的全 Fq2-同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois subcovers of the Hermitian curve in characteristic p with respect to subgroups of order p2

A (projective, geometrically irreducible, non-singular) curve X defined over a finite field Fq2 is maximal if the number Nq2 of its Fq2-rational points attains the Hasse-Weil upper bound, that is Nq2=q2+2gq+1 where g is the genus of X. An important question, also motivated by applications to algebraic-geometry codes, is to find explicit equations for maximal curves. For a few curves which are Galois covered of the Hermitian curve, this has been done so far ad hoc, in particular in the cases where the Galois group has prime order. In this paper we obtain explicit equations of all Galois covers of the Hermitian curve with Galois group of order p2 where p is the characteristic of Fq2. Doing so we also determine the Fq2-isomorphism classes of such curves and describe their full Fq2-automorphism groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信