基于分数阶拉格朗日多项式运算矩阵的高效配位技术,用于求解时空分数阶偏微分方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Saurabh Kumar , Vikas Gupta , Dia Zeidan
{"title":"基于分数阶拉格朗日多项式运算矩阵的高效配位技术,用于求解时空分数阶偏微分方程","authors":"Saurabh Kumar ,&nbsp;Vikas Gupta ,&nbsp;Dia Zeidan","doi":"10.1016/j.apnum.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations\",\"authors\":\"Saurabh Kumar ,&nbsp;Vikas Gupta ,&nbsp;Dia Zeidan\",\"doi\":\"10.1016/j.apnum.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种新型快速计算技术,用于求解一类时空分数阶线性和非线性偏微分方程。我们考虑了卡普托类型的分数导数。提出的方法基于分数阶拉格朗日多项式的运算矩阵和伪运算矩阵。要实施该方法,首先要找到积分的整数阶和分数阶运算矩阵和伪运算矩阵。然后,利用配位技术和获得的运算矩阵和伪运算矩阵,通过还原给定的时空分数微分问题生成代数方程系统。由此产生的代数方程系可以用牛顿迭代法轻松求解。此外,还提供了分数阶积分运算矩阵的上界,证实了分数阶拉格朗日多项式近似的收敛性。最后,还进行了一些数值实验,以证明所建议的数值方案的适用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations

In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信