使用金属氧化物气体传感器自动检测室内空气污染相关活动以及数据的时间内在维度估计

Luiz Miranda , Caroline Duc , Nathalie Redon , João Pinheiro , Bernadette Dorizzi , Jugurta Montalvão , Marie Verriele , Jérôme Boudy
{"title":"使用金属氧化物气体传感器自动检测室内空气污染相关活动以及数据的时间内在维度估计","authors":"Luiz Miranda ,&nbsp;Caroline Duc ,&nbsp;Nathalie Redon ,&nbsp;João Pinheiro ,&nbsp;Bernadette Dorizzi ,&nbsp;Jugurta Montalvão ,&nbsp;Marie Verriele ,&nbsp;Jérôme Boudy","doi":"10.1016/j.indenv.2024.100026","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring indoor air quality (IAQ) is crucial for safeguarding health, with daily occupant activities serving as significant sources of pollutants. This study addresses the need to identify and mitigate indoor pollution events caused by activities like cleaning and cooking. Employing metal-oxide gas (MOX) sensors, we propose a method that automatically detects indoor air pollution-related activities through intrinsic dimensionality estimation on time-windowed multivariate signals. The approach was validated using a dataset derived from two months of experiments involving 10 common household activities in a 13 m<sup>2</sup> (46 m<sup>3</sup>) room, utilizing 21 distinct MOX sensor references. The dataset, which included labeled activities, demonstrated the method’s superior accuracy compared to existing literature, showcasing its robustness against sensor drift. This research contributes to raising awareness, enabling timely intervention, and facilitating the automation of smart ventilation systems to maintain healthy indoor environments.</p></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"1 3","pages":"Article 100026"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950362024000237/pdfft?md5=1a9435d6fbe1352326038e4a72c25a48&pid=1-s2.0-S2950362024000237-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of indoor air pollution-related activities using metal-oxide gas sensors and the temporal intrinsic dimensionality estimation of data\",\"authors\":\"Luiz Miranda ,&nbsp;Caroline Duc ,&nbsp;Nathalie Redon ,&nbsp;João Pinheiro ,&nbsp;Bernadette Dorizzi ,&nbsp;Jugurta Montalvão ,&nbsp;Marie Verriele ,&nbsp;Jérôme Boudy\",\"doi\":\"10.1016/j.indenv.2024.100026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring indoor air quality (IAQ) is crucial for safeguarding health, with daily occupant activities serving as significant sources of pollutants. This study addresses the need to identify and mitigate indoor pollution events caused by activities like cleaning and cooking. Employing metal-oxide gas (MOX) sensors, we propose a method that automatically detects indoor air pollution-related activities through intrinsic dimensionality estimation on time-windowed multivariate signals. The approach was validated using a dataset derived from two months of experiments involving 10 common household activities in a 13 m<sup>2</sup> (46 m<sup>3</sup>) room, utilizing 21 distinct MOX sensor references. The dataset, which included labeled activities, demonstrated the method’s superior accuracy compared to existing literature, showcasing its robustness against sensor drift. This research contributes to raising awareness, enabling timely intervention, and facilitating the automation of smart ventilation systems to maintain healthy indoor environments.</p></div>\",\"PeriodicalId\":100665,\"journal\":{\"name\":\"Indoor Environments\",\"volume\":\"1 3\",\"pages\":\"Article 100026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950362024000237/pdfft?md5=1a9435d6fbe1352326038e4a72c25a48&pid=1-s2.0-S2950362024000237-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950362024000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362024000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保室内空气质量(IAQ)对保障健康至关重要,而居住者的日常活动是污染物的重要来源。本研究旨在满足识别和缓解由清洁和烹饪等活动造成的室内污染事件的需求。我们利用金属氧化物气体(MOX)传感器,提出了一种通过对时间窗口多变量信号进行内在维度估计来自动检测室内空气污染相关活动的方法。我们利用 21 个不同的 MOX 传感器基准,在一个 13 平方米(46 立方米)的房间内进行了两个月的实验,涉及 10 种常见的家庭活动,并使用实验数据集对该方法进行了验证。该数据集包括已标记的活动,与现有文献相比,该方法的准确性更胜一筹,显示了其对传感器漂移的稳健性。这项研究有助于提高人们的意识,实现及时干预,并促进智能通风系统的自动化,以保持健康的室内环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of indoor air pollution-related activities using metal-oxide gas sensors and the temporal intrinsic dimensionality estimation of data

Ensuring indoor air quality (IAQ) is crucial for safeguarding health, with daily occupant activities serving as significant sources of pollutants. This study addresses the need to identify and mitigate indoor pollution events caused by activities like cleaning and cooking. Employing metal-oxide gas (MOX) sensors, we propose a method that automatically detects indoor air pollution-related activities through intrinsic dimensionality estimation on time-windowed multivariate signals. The approach was validated using a dataset derived from two months of experiments involving 10 common household activities in a 13 m2 (46 m3) room, utilizing 21 distinct MOX sensor references. The dataset, which included labeled activities, demonstrated the method’s superior accuracy compared to existing literature, showcasing its robustness against sensor drift. This research contributes to raising awareness, enabling timely intervention, and facilitating the automation of smart ventilation systems to maintain healthy indoor environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信