{"title":"用于干电极脑电图记录的 382nVrms 100GΩ@50Hz 有源电极。","authors":"Guanghua Qian;Yanxing Suo;Qiao Cai;Yong Lian;Yang Zhao","doi":"10.1109/TBCAS.2024.3417716","DOIUrl":null,"url":null,"abstract":"This article describes a low noise and ultra-high input impedance active electrode (AE) interface chip for dry-electrode EEG recording. To compensate the input parasitic capacitance and the ESD leakage, power/ground/ESD bootstrapping is proposed. This design integrates chopping stabilization technique to suppress flicker noise of the amplifier which has never been tackled in previous bootstrapped AE design. Both on-chip and off-chip input routing is active shielded to minimize wire parasitic. Fabricated in a 0.18μm CMOS process, the AE core occupies about 0.056mm<sup>2</sup> and draws 17.95μA from a 1.8V supply. The proposed AE achieves 100GΩ input impedance at 50Hz and over 1GΩ at 1kHz with a low input-referred noise of 382nVrms integrated from 0.5Hz to 70Hz. This design is the first 100GΩ@50Hz input impedance chopper stabilized AE compared to the state-of-the-art. Dry-electrode EEG recording capability of the proposed AE are verified on three types of experiments including spontaneous α-wave, event related potential and steady-state visual evoked potential.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 2","pages":"332-343"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 382nVrms 100GΩ@50Hz Active Electrode for Dry-Electrode EEG Recording\",\"authors\":\"Guanghua Qian;Yanxing Suo;Qiao Cai;Yong Lian;Yang Zhao\",\"doi\":\"10.1109/TBCAS.2024.3417716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a low noise and ultra-high input impedance active electrode (AE) interface chip for dry-electrode EEG recording. To compensate the input parasitic capacitance and the ESD leakage, power/ground/ESD bootstrapping is proposed. This design integrates chopping stabilization technique to suppress flicker noise of the amplifier which has never been tackled in previous bootstrapped AE design. Both on-chip and off-chip input routing is active shielded to minimize wire parasitic. Fabricated in a 0.18μm CMOS process, the AE core occupies about 0.056mm<sup>2</sup> and draws 17.95μA from a 1.8V supply. The proposed AE achieves 100GΩ input impedance at 50Hz and over 1GΩ at 1kHz with a low input-referred noise of 382nVrms integrated from 0.5Hz to 70Hz. This design is the first 100GΩ@50Hz input impedance chopper stabilized AE compared to the state-of-the-art. Dry-electrode EEG recording capability of the proposed AE are verified on three types of experiments including spontaneous α-wave, event related potential and steady-state visual evoked potential.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"19 2\",\"pages\":\"332-343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10568459/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10568459/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 382nVrms 100GΩ@50Hz Active Electrode for Dry-Electrode EEG Recording
This article describes a low noise and ultra-high input impedance active electrode (AE) interface chip for dry-electrode EEG recording. To compensate the input parasitic capacitance and the ESD leakage, power/ground/ESD bootstrapping is proposed. This design integrates chopping stabilization technique to suppress flicker noise of the amplifier which has never been tackled in previous bootstrapped AE design. Both on-chip and off-chip input routing is active shielded to minimize wire parasitic. Fabricated in a 0.18μm CMOS process, the AE core occupies about 0.056mm2 and draws 17.95μA from a 1.8V supply. The proposed AE achieves 100GΩ input impedance at 50Hz and over 1GΩ at 1kHz with a low input-referred noise of 382nVrms integrated from 0.5Hz to 70Hz. This design is the first 100GΩ@50Hz input impedance chopper stabilized AE compared to the state-of-the-art. Dry-electrode EEG recording capability of the proposed AE are verified on three types of experiments including spontaneous α-wave, event related potential and steady-state visual evoked potential.