Yang Li, Jiaqi He, Lijia Zhang, Haoyu Liu, Meng Cao, Yan Lin, Shengyu Xu, Lianqiang Che, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, De Wu
{"title":"妊娠晚期母猪通过食用膳食纤维改善胰岛素敏感性与肠道微生物群对色氨酸代谢的调节有关。","authors":"Yang Li, Jiaqi He, Lijia Zhang, Haoyu Liu, Meng Cao, Yan Lin, Shengyu Xu, Lianqiang Che, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, De Wu","doi":"10.1186/s42523-024-00323-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.</p><p><strong>Results: </strong>Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration.</p><p><strong>Conclusions: </strong>DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"6 1","pages":"34"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism.\",\"authors\":\"Yang Li, Jiaqi He, Lijia Zhang, Haoyu Liu, Meng Cao, Yan Lin, Shengyu Xu, Lianqiang Che, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, De Wu\",\"doi\":\"10.1186/s42523-024-00323-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.</p><p><strong>Results: </strong>Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration.</p><p><strong>Conclusions: </strong>DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.</p>\",\"PeriodicalId\":72201,\"journal\":{\"name\":\"Animal microbiome\",\"volume\":\"6 1\",\"pages\":\"34\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal microbiome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42523-024-00323-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00323-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism.
Background: Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.
Results: Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration.
Conclusions: DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.