激活 Keap1/Nrf2 通路可抑制 C9orf72 ALS/FTD 模型中的线粒体功能障碍、氧化应激和运动表型。

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-06-21 Print Date: 2024-09-01 DOI:10.26508/lsa.202402853
Wing Hei Au, Leonor Miller-Fleming, Alvaro Sanchez-Martinez, James Ak Lee, Madeleine J Twyning, Hiran A Prag, Laura Raik, Scott P Allen, Pamela J Shaw, Laura Ferraiuolo, Heather Mortiboys, Alexander J Whitworth
{"title":"激活 Keap1/Nrf2 通路可抑制 C9orf72 ALS/FTD 模型中的线粒体功能障碍、氧化应激和运动表型。","authors":"Wing Hei Au, Leonor Miller-Fleming, Alvaro Sanchez-Martinez, James Ak Lee, Madeleine J Twyning, Hiran A Prag, Laura Raik, Scott P Allen, Pamela J Shaw, Laura Ferraiuolo, Heather Mortiboys, Alexander J Whitworth","doi":"10.26508/lsa.202402853","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is a common feature of <i>C9orf72</i> amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several <i>Drosophila</i> models of <i>C9orf72</i>-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue <i>C9orf72</i> locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of <i>Keap1</i> or pharmacological inhibition by dimethyl fumarate significantly rescued the <i>C9orf72</i>-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in <i>C9orf72</i> patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to <i>C9orf72</i> pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for <i>C9orf72</i>-related ALS/FTD.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in <i>C9orf72</i> ALS/FTD models.\",\"authors\":\"Wing Hei Au, Leonor Miller-Fleming, Alvaro Sanchez-Martinez, James Ak Lee, Madeleine J Twyning, Hiran A Prag, Laura Raik, Scott P Allen, Pamela J Shaw, Laura Ferraiuolo, Heather Mortiboys, Alexander J Whitworth\",\"doi\":\"10.26508/lsa.202402853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction is a common feature of <i>C9orf72</i> amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several <i>Drosophila</i> models of <i>C9orf72</i>-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue <i>C9orf72</i> locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of <i>Keap1</i> or pharmacological inhibition by dimethyl fumarate significantly rescued the <i>C9orf72</i>-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in <i>C9orf72</i> patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to <i>C9orf72</i> pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for <i>C9orf72</i>-related ALS/FTD.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402853\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402853","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体功能障碍是 C9orf72 肌萎缩性侧索硬化症/额颞叶痴呆症(ALS/FTD)的一个常见特征;然而,线粒体功能障碍是致病过程的原因还是结果仍不清楚。通过分析几种 C9orf72-ALS/FTD 果蝇模型的线粒体生物学的多个方面,我们发现形态学、氧化应激和有丝分裂通常会受到影响,这与运动能力的逐渐丧失有关。值得注意的是,只有逆转氧化应激水平的遗传操作也能挽救C9orf72的运动障碍,这支持了线粒体功能障碍、氧化应激和行为表型之间的因果联系。针对关键的抗氧化剂Keap1/Nrf2通路,我们发现基因减少Keap1或富马酸二甲酯的药理抑制能显著缓解C9orf72相关的氧化应激和运动障碍。最后,线粒体 ROS 水平也在 C9orf72 患者衍生的 iNeurons 中升高,并通过富马酸二甲酯处理得到有效抑制。这些结果表明,线粒体氧化应激是导致 C9orf72 发病的一个重要机制,它影响线粒体功能和周转的多个方面。以Keap1/Nrf2信号通路为靶点对抗氧化应激是治疗C9orf72相关渐冻人症/FTD的一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in C9orf72 ALS/FTD models.

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信