Maria Schüller, Marianne Skov-Skov Bergh, Stig Pedersen-Bjergaard, Elisabeth Leere Øiestad
{"title":"从微粉碎毛发中电薄膜提取滥用药物和处方药。","authors":"Maria Schüller, Marianne Skov-Skov Bergh, Stig Pedersen-Bjergaard, Elisabeth Leere Øiestad","doi":"10.1093/jat/bkae051","DOIUrl":null,"url":null,"abstract":"<p><p>Hair analysis can provide chronological insights into past drug use for months to years after drug administration. In comparison to analyses from other biological matrices, such as blood and urine, sample pretreatment is often tedious and not environmental friendly. In this study, we present a more environmental friendly approach to hair analysis using micropulverized hair and electromembrane extraction for the efficient extraction of 15 drugs of abuse, prescription drugs, and metabolites from hair. The optimized extraction method, involving micropulverization, demonstrated comparable yields to the standard approach of cutting and overnight incubation. A 15-min extraction method using a commercial electromembrane extraction prototype was developed and validated according to forensic guidelines, using only 10 µL of organic solvent per sample. The final method, employing HPLC-MS-MS with a biphenyl column, exhibited good linearity, precision, and sensitivity. An AgreePrep assessment comparing the environmental impact of our method with the standard routine method, involving overnight incubation and conventional liquid-liquid extraction, was conducted. This is the first time micropulverized hair has been subjected to electromembrane extraction.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"489-498"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electromembrane extraction of drugs of abuse and prescription drugs from micropulverized hair.\",\"authors\":\"Maria Schüller, Marianne Skov-Skov Bergh, Stig Pedersen-Bjergaard, Elisabeth Leere Øiestad\",\"doi\":\"10.1093/jat/bkae051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hair analysis can provide chronological insights into past drug use for months to years after drug administration. In comparison to analyses from other biological matrices, such as blood and urine, sample pretreatment is often tedious and not environmental friendly. In this study, we present a more environmental friendly approach to hair analysis using micropulverized hair and electromembrane extraction for the efficient extraction of 15 drugs of abuse, prescription drugs, and metabolites from hair. The optimized extraction method, involving micropulverization, demonstrated comparable yields to the standard approach of cutting and overnight incubation. A 15-min extraction method using a commercial electromembrane extraction prototype was developed and validated according to forensic guidelines, using only 10 µL of organic solvent per sample. The final method, employing HPLC-MS-MS with a biphenyl column, exhibited good linearity, precision, and sensitivity. An AgreePrep assessment comparing the environmental impact of our method with the standard routine method, involving overnight incubation and conventional liquid-liquid extraction, was conducted. This is the first time micropulverized hair has been subjected to electromembrane extraction.</p>\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\" \",\"pages\":\"489-498\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae051\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae051","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electromembrane extraction of drugs of abuse and prescription drugs from micropulverized hair.
Hair analysis can provide chronological insights into past drug use for months to years after drug administration. In comparison to analyses from other biological matrices, such as blood and urine, sample pretreatment is often tedious and not environmental friendly. In this study, we present a more environmental friendly approach to hair analysis using micropulverized hair and electromembrane extraction for the efficient extraction of 15 drugs of abuse, prescription drugs, and metabolites from hair. The optimized extraction method, involving micropulverization, demonstrated comparable yields to the standard approach of cutting and overnight incubation. A 15-min extraction method using a commercial electromembrane extraction prototype was developed and validated according to forensic guidelines, using only 10 µL of organic solvent per sample. The final method, employing HPLC-MS-MS with a biphenyl column, exhibited good linearity, precision, and sensitivity. An AgreePrep assessment comparing the environmental impact of our method with the standard routine method, involving overnight incubation and conventional liquid-liquid extraction, was conducted. This is the first time micropulverized hair has been subjected to electromembrane extraction.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.