Shannon R. Curley, José R. Ramírez-Garofalo, Michael C. Allen
{"title":"南方繁殖种群导致北极和亚北极雁的迁徙距离不断缩短","authors":"Shannon R. Curley, José R. Ramírez-Garofalo, Michael C. Allen","doi":"10.1111/ecog.07081","DOIUrl":null,"url":null,"abstract":"<p>Migration is a prevalent strategy among birds used to track seasonal resources throughout the year. Individual and population-level migratory movements provide insight to life-history variation, carry-over effects, and impacts of climate change. Our understanding of how geographic variation in a species' breeding or wintering grounds can impact migration distances is limited. However, changes in migration distances can have important fitness consequences for individuals and conservation implications for populations, particularly if migratory connectivity is altered during the annual cycle. In this study, we use three decades of data from the United States Geological Survey Bird Banding Laboratory for six migratory species of Arctic and subarctic breeding geese. We employ a Bayesian hierarchical framework to test if the distance between breeding and wintering locations has changed over time, while accounting for the latitude of the breeding grounds. A model that included only a temporal trend estimated the average rate of change in migration distance, across all six species, at −3.0 km/year over the period 1990–2019. Five of the six species showed a significant decrease in migration distances. Including an interaction effect with breeding latitude revealed that the reduction in migration distance was strongest in the southernmost populations for four of the six species. For those species, migration distance in northern populations were all either relatively unchanged or increasing. This indicates that southern breeding populations of geese had a stronger association with the observed spatiotemporal changes in wintering ranges, potentially influenced by a combination of climatic and biotic factors (e.g. resource availability or competitive interactions) that uniquely impact these populations. Abundant, long-term banding data shows promise for use in illuminating changes in migratory patterns under climate change, leading to improved management and conservation outcomes, from regional to continental scales.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 8","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07081","citationCount":"0","resultStr":"{\"title\":\"Southern breeding populations drive declining migration distances in Arctic and subarctic geese\",\"authors\":\"Shannon R. Curley, José R. Ramírez-Garofalo, Michael C. Allen\",\"doi\":\"10.1111/ecog.07081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Migration is a prevalent strategy among birds used to track seasonal resources throughout the year. Individual and population-level migratory movements provide insight to life-history variation, carry-over effects, and impacts of climate change. Our understanding of how geographic variation in a species' breeding or wintering grounds can impact migration distances is limited. However, changes in migration distances can have important fitness consequences for individuals and conservation implications for populations, particularly if migratory connectivity is altered during the annual cycle. In this study, we use three decades of data from the United States Geological Survey Bird Banding Laboratory for six migratory species of Arctic and subarctic breeding geese. We employ a Bayesian hierarchical framework to test if the distance between breeding and wintering locations has changed over time, while accounting for the latitude of the breeding grounds. A model that included only a temporal trend estimated the average rate of change in migration distance, across all six species, at −3.0 km/year over the period 1990–2019. Five of the six species showed a significant decrease in migration distances. Including an interaction effect with breeding latitude revealed that the reduction in migration distance was strongest in the southernmost populations for four of the six species. For those species, migration distance in northern populations were all either relatively unchanged or increasing. This indicates that southern breeding populations of geese had a stronger association with the observed spatiotemporal changes in wintering ranges, potentially influenced by a combination of climatic and biotic factors (e.g. resource availability or competitive interactions) that uniquely impact these populations. Abundant, long-term banding data shows promise for use in illuminating changes in migratory patterns under climate change, leading to improved management and conservation outcomes, from regional to continental scales.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 8\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07081\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07081","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Southern breeding populations drive declining migration distances in Arctic and subarctic geese
Migration is a prevalent strategy among birds used to track seasonal resources throughout the year. Individual and population-level migratory movements provide insight to life-history variation, carry-over effects, and impacts of climate change. Our understanding of how geographic variation in a species' breeding or wintering grounds can impact migration distances is limited. However, changes in migration distances can have important fitness consequences for individuals and conservation implications for populations, particularly if migratory connectivity is altered during the annual cycle. In this study, we use three decades of data from the United States Geological Survey Bird Banding Laboratory for six migratory species of Arctic and subarctic breeding geese. We employ a Bayesian hierarchical framework to test if the distance between breeding and wintering locations has changed over time, while accounting for the latitude of the breeding grounds. A model that included only a temporal trend estimated the average rate of change in migration distance, across all six species, at −3.0 km/year over the period 1990–2019. Five of the six species showed a significant decrease in migration distances. Including an interaction effect with breeding latitude revealed that the reduction in migration distance was strongest in the southernmost populations for four of the six species. For those species, migration distance in northern populations were all either relatively unchanged or increasing. This indicates that southern breeding populations of geese had a stronger association with the observed spatiotemporal changes in wintering ranges, potentially influenced by a combination of climatic and biotic factors (e.g. resource availability or competitive interactions) that uniquely impact these populations. Abundant, long-term banding data shows promise for use in illuminating changes in migratory patterns under climate change, leading to improved management and conservation outcomes, from regional to continental scales.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.