从分子模拟和密度梯度理论看二元混合物的气液界面特性

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-06-19 DOI:10.1002/aic.18503
Oliver Großmann, Simon Stephan, Kai Langenbach, Hans Hasse
{"title":"从分子模拟和密度梯度理论看二元混合物的气液界面特性","authors":"Oliver Großmann, Simon Stephan, Kai Langenbach, Hans Hasse","doi":"10.1002/aic.18503","DOIUrl":null,"url":null,"abstract":"Properties of the vapor-liquid interface of 16 binary mixtures were studied using molecular dynamics simulations and density gradient theory in combination with the PCP-SAFT equation of state. All binary combinations of the heavy-boiling components (cyclohexane, toluene, acetone, and carbon tetrachloride) with the light-boiling components (methane, carbon dioxide, hydrogen chloride, and nitrogen) were investigated at 0.7 times the critical temperature of the heavy-boiling component in the whole composition range. Data on the surface tension, the enrichment, the relative adsorption, and the interfacial thickness, as well as for the vapor-liquid equilibrium and Henry's law constant are reported. The binary interaction parameters were fitted to experimental data in a consistent way for all systems and both methods. Overall, the results from both methods agree well for all investigated properties. The interfacial properties of the different studied systems differ strongly. We show that these differences are directly related to the underlying phase equilibrium behavior.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor-liquid interfacial properties of binary mixtures from molecular simulation and density gradient theory\",\"authors\":\"Oliver Großmann, Simon Stephan, Kai Langenbach, Hans Hasse\",\"doi\":\"10.1002/aic.18503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Properties of the vapor-liquid interface of 16 binary mixtures were studied using molecular dynamics simulations and density gradient theory in combination with the PCP-SAFT equation of state. All binary combinations of the heavy-boiling components (cyclohexane, toluene, acetone, and carbon tetrachloride) with the light-boiling components (methane, carbon dioxide, hydrogen chloride, and nitrogen) were investigated at 0.7 times the critical temperature of the heavy-boiling component in the whole composition range. Data on the surface tension, the enrichment, the relative adsorption, and the interfacial thickness, as well as for the vapor-liquid equilibrium and Henry's law constant are reported. The binary interaction parameters were fitted to experimental data in a consistent way for all systems and both methods. Overall, the results from both methods agree well for all investigated properties. The interfacial properties of the different studied systems differ strongly. We show that these differences are directly related to the underlying phase equilibrium behavior.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18503\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18503","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用分子动力学模拟和密度梯度理论,结合 PCP-SAFT 状态方程,研究了 16 种二元混合物的汽液界面特性。研究了重沸组分(环己烷、甲苯、丙酮和四氯化碳)与轻沸组分(甲烷、二氧化碳、氯化氢和氮)的所有二元组合,在整个组成范围内的临界温度为重沸组分的 0.7 倍。报告了表面张力、富集度、相对吸附、界面厚度以及汽液平衡和亨利定律常数的数据。所有系统和两种方法的二元相互作用参数都与实验数据进行了一致的拟合。总体而言,两种方法得出的结果在所有研究属性方面都非常吻合。不同研究体系的界面特性差异很大。我们的研究表明,这些差异与基本的相平衡行为直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vapor-liquid interfacial properties of binary mixtures from molecular simulation and density gradient theory
Properties of the vapor-liquid interface of 16 binary mixtures were studied using molecular dynamics simulations and density gradient theory in combination with the PCP-SAFT equation of state. All binary combinations of the heavy-boiling components (cyclohexane, toluene, acetone, and carbon tetrachloride) with the light-boiling components (methane, carbon dioxide, hydrogen chloride, and nitrogen) were investigated at 0.7 times the critical temperature of the heavy-boiling component in the whole composition range. Data on the surface tension, the enrichment, the relative adsorption, and the interfacial thickness, as well as for the vapor-liquid equilibrium and Henry's law constant are reported. The binary interaction parameters were fitted to experimental data in a consistent way for all systems and both methods. Overall, the results from both methods agree well for all investigated properties. The interfacial properties of the different studied systems differ strongly. We show that these differences are directly related to the underlying phase equilibrium behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信