用于短期太阳辐照度预测的天空图像:线性机器学习模型比较研究

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Elham Shirazi;Ivan Gordon;Angele Reinders;Francky Catthoor
{"title":"用于短期太阳辐照度预测的天空图像:线性机器学习模型比较研究","authors":"Elham Shirazi;Ivan Gordon;Angele Reinders;Francky Catthoor","doi":"10.1109/JPHOTOV.2024.3398365","DOIUrl":null,"url":null,"abstract":"An accurate solar irradiance forecast is critical to the reliable operation of electrical grids with increasing integration of photovoltaic systems. This study compares short-term solar irradiance forecasts based on sky images using seven different linear machine learning algorithms. In the first step, several features are extracted from sky images, reconstructed, and next used as exogenous inputs to seven machine learning algorithms, i.e., linear regression, least absolute shrinkage and selection operator (Lasso) regression, ridge regression, Bayesian ridge (BR) regression, stochastic gradient descent (SGD), generalized linear model (GLM) regression, and random sample consensus (RANSAC). A representative dataset of three years of sky images with 1-minute resolution from 2014 to 2016 serves for comparison together with the clear sky indexes as inputs to forecast ground-level solar radiances for up to 30 minutes ahead. The results of the abovementioned algorithms are compared, where for 5 and 10 minutes ahead, Lasso has the highest accuracy with a root-mean-square error (RMSE) of 0.05 and 0.062 kW/m\n<sup>2</sup>\n, while for 15 to 30 minutes ahead, stochastic gradient descent provides the most accurate forecast with an RMSE of 0.067, 0.071, 0.074, and 0.076 kW/m\n<sup>2</sup>\n for 15, 20, 25, and 30 minutes ahead horizons, respectively. For all the time horizons, Bayesian ridge is among the three most accurate models, and RANSAC has the highest error. The results show that ground-level solar irradiance can be forecasted with a relatively low average instantaneous error ranging from 0.05 to 0.1 kW/m\n<sup>2</sup>\n depending on the model and forecasting horizon without imposing a too high execution time overhead, namely, less than 7 s. The accuracy of the forecast can be improved if combined with cloud detection algorithms. Overall, ridge, Bayesian ridge, and stochastic gradient descent provide more accurate forecasts for short-term horizons.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 4","pages":"691-698"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sky Images for Short-Term Solar Irradiance Forecast: A Comparative Study of Linear Machine Learning Models\",\"authors\":\"Elham Shirazi;Ivan Gordon;Angele Reinders;Francky Catthoor\",\"doi\":\"10.1109/JPHOTOV.2024.3398365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate solar irradiance forecast is critical to the reliable operation of electrical grids with increasing integration of photovoltaic systems. This study compares short-term solar irradiance forecasts based on sky images using seven different linear machine learning algorithms. In the first step, several features are extracted from sky images, reconstructed, and next used as exogenous inputs to seven machine learning algorithms, i.e., linear regression, least absolute shrinkage and selection operator (Lasso) regression, ridge regression, Bayesian ridge (BR) regression, stochastic gradient descent (SGD), generalized linear model (GLM) regression, and random sample consensus (RANSAC). A representative dataset of three years of sky images with 1-minute resolution from 2014 to 2016 serves for comparison together with the clear sky indexes as inputs to forecast ground-level solar radiances for up to 30 minutes ahead. The results of the abovementioned algorithms are compared, where for 5 and 10 minutes ahead, Lasso has the highest accuracy with a root-mean-square error (RMSE) of 0.05 and 0.062 kW/m\\n<sup>2</sup>\\n, while for 15 to 30 minutes ahead, stochastic gradient descent provides the most accurate forecast with an RMSE of 0.067, 0.071, 0.074, and 0.076 kW/m\\n<sup>2</sup>\\n for 15, 20, 25, and 30 minutes ahead horizons, respectively. For all the time horizons, Bayesian ridge is among the three most accurate models, and RANSAC has the highest error. The results show that ground-level solar irradiance can be forecasted with a relatively low average instantaneous error ranging from 0.05 to 0.1 kW/m\\n<sup>2</sup>\\n depending on the model and forecasting horizon without imposing a too high execution time overhead, namely, less than 7 s. The accuracy of the forecast can be improved if combined with cloud detection algorithms. Overall, ridge, Bayesian ridge, and stochastic gradient descent provide more accurate forecasts for short-term horizons.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"14 4\",\"pages\":\"691-698\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10550923/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10550923/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着光伏系统集成的不断增加,准确的太阳辐照度预测对电网的可靠运行至关重要。本研究使用七种不同的线性机器学习算法,对基于天空图像的短期太阳辐照度预报进行了比较。第一步,从天空图像中提取若干特征并进行重构,然后将其用作七种机器学习算法的外源输入,即线性回归、最小绝对收缩和选择算子(Lasso)回归、脊回归、贝叶斯脊(BR)回归、随机梯度下降(SGD)、广义线性模型(GLM)回归和随机样本共识(RANSAC)。从 2014 年到 2016 年,有代表性的三年 1 分钟分辨率天空图像数据集与晴空指数作为输入进行比较,以预测未来 30 分钟内的地面太阳辐射。对上述算法的结果进行了比较,对于未来 5 分钟和 10 分钟,Lasso 的精度最高,均方根误差(RMSE)分别为 0.05 和 0.062 kW/m2,而对于未来 15 分钟至 30 分钟,随机梯度下降的预测精度最高,均方根误差分别为 0.067、0.071、0.074 和 0.076 kW/m2(未来 15 分钟、20 分钟、25 分钟和 30 分钟)。在所有时间水平上,贝叶斯脊是三个最准确的模型之一,而 RANSAC 的误差最大。结果表明,地面太阳辐照度预报的平均瞬时误差在 0.05 至 0.1 kW/m2 之间,具体取决于模型和预报时间跨度,且不会造成过高的执行时间开销,即小于 7 秒。总体而言,山脊算法、贝叶斯山脊算法和随机梯度下降算法能为短期预测提供更准确的预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sky Images for Short-Term Solar Irradiance Forecast: A Comparative Study of Linear Machine Learning Models
An accurate solar irradiance forecast is critical to the reliable operation of electrical grids with increasing integration of photovoltaic systems. This study compares short-term solar irradiance forecasts based on sky images using seven different linear machine learning algorithms. In the first step, several features are extracted from sky images, reconstructed, and next used as exogenous inputs to seven machine learning algorithms, i.e., linear regression, least absolute shrinkage and selection operator (Lasso) regression, ridge regression, Bayesian ridge (BR) regression, stochastic gradient descent (SGD), generalized linear model (GLM) regression, and random sample consensus (RANSAC). A representative dataset of three years of sky images with 1-minute resolution from 2014 to 2016 serves for comparison together with the clear sky indexes as inputs to forecast ground-level solar radiances for up to 30 minutes ahead. The results of the abovementioned algorithms are compared, where for 5 and 10 minutes ahead, Lasso has the highest accuracy with a root-mean-square error (RMSE) of 0.05 and 0.062 kW/m 2 , while for 15 to 30 minutes ahead, stochastic gradient descent provides the most accurate forecast with an RMSE of 0.067, 0.071, 0.074, and 0.076 kW/m 2 for 15, 20, 25, and 30 minutes ahead horizons, respectively. For all the time horizons, Bayesian ridge is among the three most accurate models, and RANSAC has the highest error. The results show that ground-level solar irradiance can be forecasted with a relatively low average instantaneous error ranging from 0.05 to 0.1 kW/m 2 depending on the model and forecasting horizon without imposing a too high execution time overhead, namely, less than 7 s. The accuracy of the forecast can be improved if combined with cloud detection algorithms. Overall, ridge, Bayesian ridge, and stochastic gradient descent provide more accurate forecasts for short-term horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信