用于纳米材料图案化的 "纳米级电动车":可编程二氧化硅复合纳米粒子的选择性电泳沉积

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hui Xiao , Jinyang Zhao , Xuefei Li , Hangchuan Zhang , Miao Zhou , Weiran Cao , Xiaolin Yan , Xin Zhang , Xiao Wei Sun , Lixuan Chen
{"title":"用于纳米材料图案化的 \"纳米级电动车\":可编程二氧化硅复合纳米粒子的选择性电泳沉积","authors":"Hui Xiao ,&nbsp;Jinyang Zhao ,&nbsp;Xuefei Li ,&nbsp;Hangchuan Zhang ,&nbsp;Miao Zhou ,&nbsp;Weiran Cao ,&nbsp;Xiaolin Yan ,&nbsp;Xin Zhang ,&nbsp;Xiao Wei Sun ,&nbsp;Lixuan Chen","doi":"10.1016/j.nanoen.2024.109906","DOIUrl":null,"url":null,"abstract":"<div><p>Colloidal nanocrystals stand at the forefront of various applications given their unique optoelectronic properties and abundant active sites. However, the surface dynamics of nanocrystals make it difficult to avoid performance sacrifices that result from certain processing methods. Here we introduce a general nanoscale electric vehicle (NEV) platform for efficient and lossless manipulation and processing of functional nanomaterials by selective electrophoretic deposition. Dual-ligand modified system comprising charging ligands and anchoring ligands enables NEV to be universally compatible with fine patterning of various nanomaterials such as quantum dots, perovskites, rare-earth compositions or Janus materials. Without performance impairment from additional modifications, the luminescence performance of the nanocrystals improved significantly with the help of NEV to a level comparable to the commercial standard. Furthermore, we demonstrate the capabilities of our approach for display and anti-counterfeiting encryption applications. Our strategy offers a versatile way of creating high-performance nanomaterial devices in a cost-effective and non-destructive manner.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Nanoscale electric vehicle\\\" for the patterning of nanomaterials: Selective electrophoretic deposition of programmable silica composite nanoparticles\",\"authors\":\"Hui Xiao ,&nbsp;Jinyang Zhao ,&nbsp;Xuefei Li ,&nbsp;Hangchuan Zhang ,&nbsp;Miao Zhou ,&nbsp;Weiran Cao ,&nbsp;Xiaolin Yan ,&nbsp;Xin Zhang ,&nbsp;Xiao Wei Sun ,&nbsp;Lixuan Chen\",\"doi\":\"10.1016/j.nanoen.2024.109906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colloidal nanocrystals stand at the forefront of various applications given their unique optoelectronic properties and abundant active sites. However, the surface dynamics of nanocrystals make it difficult to avoid performance sacrifices that result from certain processing methods. Here we introduce a general nanoscale electric vehicle (NEV) platform for efficient and lossless manipulation and processing of functional nanomaterials by selective electrophoretic deposition. Dual-ligand modified system comprising charging ligands and anchoring ligands enables NEV to be universally compatible with fine patterning of various nanomaterials such as quantum dots, perovskites, rare-earth compositions or Janus materials. Without performance impairment from additional modifications, the luminescence performance of the nanocrystals improved significantly with the help of NEV to a level comparable to the commercial standard. Furthermore, we demonstrate the capabilities of our approach for display and anti-counterfeiting encryption applications. Our strategy offers a versatile way of creating high-performance nanomaterial devices in a cost-effective and non-destructive manner.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006542\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

胶体纳米晶体具有独特的光电特性和丰富的活性位点,因此处于各种应用的前沿。然而,由于纳米晶体的表面动力学特性,很难避免某些加工方法所带来的性能损失。在此,我们介绍一种通用的纳米级电动车(NEV)平台,通过选择性电泳沉积,高效、无损地操纵和处理功能纳米材料。由充电配体和锚定配体组成的双配体修饰系统使 NEV 能够普遍兼容各种纳米材料(如量子点、过氧化物、稀土成分或 Janus 材料)的精细图案化。在 NEV 的帮助下,纳米晶体的发光性能显著提高,达到了与商业标准相当的水平,而且不会因为额外的改性而影响性能。此外,我们还展示了我们的方法在显示和防伪加密应用方面的能力。我们的策略为以低成本、无损伤的方式制造高性能纳米材料器件提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

"Nanoscale electric vehicle" for the patterning of nanomaterials: Selective electrophoretic deposition of programmable silica composite nanoparticles

"Nanoscale electric vehicle" for the patterning of nanomaterials: Selective electrophoretic deposition of programmable silica composite nanoparticles

Colloidal nanocrystals stand at the forefront of various applications given their unique optoelectronic properties and abundant active sites. However, the surface dynamics of nanocrystals make it difficult to avoid performance sacrifices that result from certain processing methods. Here we introduce a general nanoscale electric vehicle (NEV) platform for efficient and lossless manipulation and processing of functional nanomaterials by selective electrophoretic deposition. Dual-ligand modified system comprising charging ligands and anchoring ligands enables NEV to be universally compatible with fine patterning of various nanomaterials such as quantum dots, perovskites, rare-earth compositions or Janus materials. Without performance impairment from additional modifications, the luminescence performance of the nanocrystals improved significantly with the help of NEV to a level comparable to the commercial standard. Furthermore, we demonstrate the capabilities of our approach for display and anti-counterfeiting encryption applications. Our strategy offers a versatile way of creating high-performance nanomaterial devices in a cost-effective and non-destructive manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信