利用 CFD-DEM 分析高压磨料水射流中的多相流和喷嘴磨损情况

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Xiang Zou , Liandong Fu , Lin Wu
{"title":"利用 CFD-DEM 分析高压磨料水射流中的多相流和喷嘴磨损情况","authors":"Xiang Zou ,&nbsp;Liandong Fu ,&nbsp;Lin Wu","doi":"10.1016/j.powtec.2024.120019","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of wear failure in High-Pressure Abrasive Water Jet (HP-AWJ) nozzles is an unavoidable challenge, and studying methods to enhance and predict the effective lifetime of nozzles is worth deep exploration. This paper employs a CFD-DEM coupling numerical approach to investigate wear phenomena inside the HP-AWJ nozzle, aiming to capture the realistic particle wear and erosion failure issues at the focusing tube region, which is a high-wear area of the HP-AWJ nozzle. Furthermore, the study considers realistic particles and nozzle wall constitutive models, incorporating material properties into the physical model, and employs computer-aided design methods to reflect wear failure conditions at different time intervals in the inner wall of the focusing tube at the nozzle. The results demonstrate that the number of realistic particles and initial inlet velocity has no impact on the particle exit kinetic energy. However, the particle-wall restitution coefficient affects the average particle kinetic energy at the outlet in the AWJ nozzle. The equivalent model of the realistic particles reflects the influence of the particle roundness on particle kinetic energy, acceleration, and stress concentration variations in the nozzle. These variations further affect the particle erosion rate on the nozzle wall and the actual wear failure problems on the wall surface. Finally, by combining the proposed erosion and wear model, a representative erosion profile at the AWJ focusing tube location comparable to experimental results is obtained, and the wear depth of the focusing tube changing with time is also studied. The results and methodologies presented in this paper provide valuable guidance for controlling the effective service lifetime of the AWJ nozzle, improving machining efficiency, and extending the lifespan of the AWJ nozzle.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase flow and nozzle wear with CFD-DEM in high-pressure abrasive water jet\",\"authors\":\"Xiang Zou ,&nbsp;Liandong Fu ,&nbsp;Lin Wu\",\"doi\":\"10.1016/j.powtec.2024.120019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The issue of wear failure in High-Pressure Abrasive Water Jet (HP-AWJ) nozzles is an unavoidable challenge, and studying methods to enhance and predict the effective lifetime of nozzles is worth deep exploration. This paper employs a CFD-DEM coupling numerical approach to investigate wear phenomena inside the HP-AWJ nozzle, aiming to capture the realistic particle wear and erosion failure issues at the focusing tube region, which is a high-wear area of the HP-AWJ nozzle. Furthermore, the study considers realistic particles and nozzle wall constitutive models, incorporating material properties into the physical model, and employs computer-aided design methods to reflect wear failure conditions at different time intervals in the inner wall of the focusing tube at the nozzle. The results demonstrate that the number of realistic particles and initial inlet velocity has no impact on the particle exit kinetic energy. However, the particle-wall restitution coefficient affects the average particle kinetic energy at the outlet in the AWJ nozzle. The equivalent model of the realistic particles reflects the influence of the particle roundness on particle kinetic energy, acceleration, and stress concentration variations in the nozzle. These variations further affect the particle erosion rate on the nozzle wall and the actual wear failure problems on the wall surface. Finally, by combining the proposed erosion and wear model, a representative erosion profile at the AWJ focusing tube location comparable to experimental results is obtained, and the wear depth of the focusing tube changing with time is also studied. The results and methodologies presented in this paper provide valuable guidance for controlling the effective service lifetime of the AWJ nozzle, improving machining efficiency, and extending the lifespan of the AWJ nozzle.</p></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024006636\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024006636","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

高压磨料水射流(HP-AWJ)喷嘴的磨损失效问题是一个不可避免的挑战,研究提高和预测喷嘴有效寿命的方法值得深入探讨。本文采用 CFD-DEM 耦合数值方法研究 HP-AWJ 喷嘴内部的磨损现象,旨在捕捉 HP-AWJ 喷嘴高磨损区域聚焦管区域的真实颗粒磨损和侵蚀失效问题。此外,研究还考虑了现实颗粒和喷嘴内壁构成模型,将材料特性纳入物理模型,并采用计算机辅助设计方法反映喷嘴聚焦管内壁不同时间间隔的磨损失效条件。结果表明,现实颗粒数量和初始入口速度对颗粒出口动能没有影响。然而,颗粒壁面恢复系数会影响 AWJ 喷嘴出口处的平均颗粒动能。现实颗粒的等效模型反映了颗粒圆度对喷嘴中颗粒动能、加速度和应力集中变化的影响。这些变化会进一步影响喷嘴壁上的颗粒侵蚀率和壁面上的实际磨损失效问题。最后,结合所提出的侵蚀和磨损模型,在 AWJ 聚焦管位置获得了与实验结果相当的代表性侵蚀曲线,并研究了聚焦管磨损深度随时间的变化。本文介绍的结果和方法为控制 AWJ 喷嘴的有效使用寿命、提高加工效率和延长 AWJ 喷嘴的使用寿命提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiphase flow and nozzle wear with CFD-DEM in high-pressure abrasive water jet

Multiphase flow and nozzle wear with CFD-DEM in high-pressure abrasive water jet

The issue of wear failure in High-Pressure Abrasive Water Jet (HP-AWJ) nozzles is an unavoidable challenge, and studying methods to enhance and predict the effective lifetime of nozzles is worth deep exploration. This paper employs a CFD-DEM coupling numerical approach to investigate wear phenomena inside the HP-AWJ nozzle, aiming to capture the realistic particle wear and erosion failure issues at the focusing tube region, which is a high-wear area of the HP-AWJ nozzle. Furthermore, the study considers realistic particles and nozzle wall constitutive models, incorporating material properties into the physical model, and employs computer-aided design methods to reflect wear failure conditions at different time intervals in the inner wall of the focusing tube at the nozzle. The results demonstrate that the number of realistic particles and initial inlet velocity has no impact on the particle exit kinetic energy. However, the particle-wall restitution coefficient affects the average particle kinetic energy at the outlet in the AWJ nozzle. The equivalent model of the realistic particles reflects the influence of the particle roundness on particle kinetic energy, acceleration, and stress concentration variations in the nozzle. These variations further affect the particle erosion rate on the nozzle wall and the actual wear failure problems on the wall surface. Finally, by combining the proposed erosion and wear model, a representative erosion profile at the AWJ focusing tube location comparable to experimental results is obtained, and the wear depth of the focusing tube changing with time is also studied. The results and methodologies presented in this paper provide valuable guidance for controlling the effective service lifetime of the AWJ nozzle, improving machining efficiency, and extending the lifespan of the AWJ nozzle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信