全面回顾使用机器学习算法的精神疾病预测分析模型

Md. Monirul Islam , Shahriar Hassan , Sharmin Akter , Ferdaus Anam Jibon , Md. Sahidullah
{"title":"全面回顾使用机器学习算法的精神疾病预测分析模型","authors":"Md. Monirul Islam ,&nbsp;Shahriar Hassan ,&nbsp;Sharmin Akter ,&nbsp;Ferdaus Anam Jibon ,&nbsp;Md. Sahidullah","doi":"10.1016/j.health.2024.100350","DOIUrl":null,"url":null,"abstract":"<div><p>Our emotional, psychological, and social well-being are all parts of our mental health, influencing our thoughts, emotions, and behaviors. Mental health also influences how we respond to stress, interact with others, and make good or bad decisions. There has been growing interest in the use of machine learning for the early detection of mental illness. This study reviews the machine learning models, algorithms, and applications for the early detection of mental disease, particularly emphasizing the data modalities. We further propose a comprehensive methodology for assessing mental health that synergistically combines social media monitoring, data analytics from wearable devices, verbal polls, and individualized support. We provide an overview of the field’s current state, highlight the potential benefits and challenges of using machine learning in mental health care, and a new taxonomy of mental disorders issues based on five domains of data types. We review existing research on using machine learning to detect and treat mental illness and discuss the implications for future research. Finally, the value of this work lies in its potential to provide a fast and accurate method for predicting the mental health status of a person, which may assist in the diagnosis and treatment of mental illness.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"6 ","pages":"Article 100350"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000522/pdfft?md5=bc1cb3cc91aa0634c506d50a66bd2d34&pid=1-s2.0-S2772442524000522-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of predictive analytics models for mental illness using machine learning algorithms\",\"authors\":\"Md. Monirul Islam ,&nbsp;Shahriar Hassan ,&nbsp;Sharmin Akter ,&nbsp;Ferdaus Anam Jibon ,&nbsp;Md. Sahidullah\",\"doi\":\"10.1016/j.health.2024.100350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our emotional, psychological, and social well-being are all parts of our mental health, influencing our thoughts, emotions, and behaviors. Mental health also influences how we respond to stress, interact with others, and make good or bad decisions. There has been growing interest in the use of machine learning for the early detection of mental illness. This study reviews the machine learning models, algorithms, and applications for the early detection of mental disease, particularly emphasizing the data modalities. We further propose a comprehensive methodology for assessing mental health that synergistically combines social media monitoring, data analytics from wearable devices, verbal polls, and individualized support. We provide an overview of the field’s current state, highlight the potential benefits and challenges of using machine learning in mental health care, and a new taxonomy of mental disorders issues based on five domains of data types. We review existing research on using machine learning to detect and treat mental illness and discuss the implications for future research. Finally, the value of this work lies in its potential to provide a fast and accurate method for predicting the mental health status of a person, which may assist in the diagnosis and treatment of mental illness.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"6 \",\"pages\":\"Article 100350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000522/pdfft?md5=bc1cb3cc91aa0634c506d50a66bd2d34&pid=1-s2.0-S2772442524000522-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的情绪、心理和社会福祉都是心理健康的组成部分,影响着我们的思想、情感和行为。心理健康也会影响我们如何应对压力、与他人互动以及做出正确或错误的决定。人们对使用机器学习来早期检测精神疾病的兴趣与日俱增。本研究回顾了用于早期检测精神疾病的机器学习模型、算法和应用,尤其强调了数据模式。我们进一步提出了一种评估心理健康的综合方法,该方法将社交媒体监测、可穿戴设备的数据分析、口头民意调查和个性化支持协同结合在一起。我们概述了该领域的现状,强调了在心理健康护理中使用机器学习的潜在益处和挑战,以及基于五个数据类型领域的精神障碍问题新分类法。我们回顾了利用机器学习检测和治疗精神疾病的现有研究,并讨论了未来研究的意义。最后,这项工作的价值在于它有可能提供一种快速准确的方法来预测一个人的精神健康状况,从而有助于精神疾病的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive review of predictive analytics models for mental illness using machine learning algorithms

Our emotional, psychological, and social well-being are all parts of our mental health, influencing our thoughts, emotions, and behaviors. Mental health also influences how we respond to stress, interact with others, and make good or bad decisions. There has been growing interest in the use of machine learning for the early detection of mental illness. This study reviews the machine learning models, algorithms, and applications for the early detection of mental disease, particularly emphasizing the data modalities. We further propose a comprehensive methodology for assessing mental health that synergistically combines social media monitoring, data analytics from wearable devices, verbal polls, and individualized support. We provide an overview of the field’s current state, highlight the potential benefits and challenges of using machine learning in mental health care, and a new taxonomy of mental disorders issues based on five domains of data types. We review existing research on using machine learning to detect and treat mental illness and discuss the implications for future research. Finally, the value of this work lies in its potential to provide a fast and accurate method for predicting the mental health status of a person, which may assist in the diagnosis and treatment of mental illness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信