{"title":"某些图着色复合体的连通性","authors":"Nandini Nilakantan , Samir Shukla","doi":"10.1016/j.topol.2024.108985","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we consider the bipartite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We prove that the connectedness of the complex <span><math><mtext>Hom</mtext><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mi>m</mi><mo>−</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> if <span><math><mi>m</mi><mo>≥</mo><mi>n</mi></math></span> and <span><math><mi>m</mi><mo>−</mo><mn>3</mn></math></span> in all the other cases. Therefore, we show that for this class of graphs, <span><math><mtext>Hom</mtext><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is exactly <span><math><mo>(</mo><mi>m</mi><mo>−</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>-connected, <span><math><mi>m</mi><mo>≥</mo><mi>n</mi></math></span>, where <em>d</em> is the maximal degree of the graph <em>G</em>.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"354 ","pages":"Article 108985"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectedness of certain graph coloring complexes\",\"authors\":\"Nandini Nilakantan , Samir Shukla\",\"doi\":\"10.1016/j.topol.2024.108985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we consider the bipartite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We prove that the connectedness of the complex <span><math><mtext>Hom</mtext><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mi>m</mi><mo>−</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> if <span><math><mi>m</mi><mo>≥</mo><mi>n</mi></math></span> and <span><math><mi>m</mi><mo>−</mo><mn>3</mn></math></span> in all the other cases. Therefore, we show that for this class of graphs, <span><math><mtext>Hom</mtext><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is exactly <span><math><mo>(</mo><mi>m</mi><mo>−</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>-connected, <span><math><mi>m</mi><mo>≥</mo><mi>n</mi></math></span>, where <em>d</em> is the maximal degree of the graph <em>G</em>.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"354 \",\"pages\":\"Article 108985\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001706\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑的是双方图 K2×Kn。我们证明,复数 Hom(K2×Kn,Km) 的连通性在 m≥n 时为 m-n-1,在所有其他情况下为 m-3。因此,我们证明了对于这一类图,Hom(G,Km) 恰好是 (m-d-2)- 连接的,m≥n,其中 d 是图 G 的最大度。
In this article, we consider the bipartite graphs . We prove that the connectedness of the complex is if and in all the other cases. Therefore, we show that for this class of graphs, is exactly -connected, , where d is the maximal degree of the graph G.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.