{"title":"k 类估计器和 2SGMM 估计器的 Frisch-Waugh-Lovell 定理类型结果","authors":"Deepankar Basu","doi":"10.1016/j.spl.2024.110188","DOIUrl":null,"url":null,"abstract":"<div><p>The Frisch–Waugh–Lovell (FWL) theorem shows that for the least squares estimator, parameter estimates from full and partial models are identically same. I show that in linear regression models with a mix of exogenous and endogenous regressors, FWL theorem-type results hold for the k-class estimators (including LIML) and the two-step optimal GMM estimator.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frisch–Waugh–Lovell theorem-type results for the k-Class and 2SGMM estimators\",\"authors\":\"Deepankar Basu\",\"doi\":\"10.1016/j.spl.2024.110188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Frisch–Waugh–Lovell (FWL) theorem shows that for the least squares estimator, parameter estimates from full and partial models are identically same. I show that in linear regression models with a mix of exogenous and endogenous regressors, FWL theorem-type results hold for the k-class estimators (including LIML) and the two-step optimal GMM estimator.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frisch–Waugh–Lovell theorem-type results for the k-Class and 2SGMM estimators
The Frisch–Waugh–Lovell (FWL) theorem shows that for the least squares estimator, parameter estimates from full and partial models are identically same. I show that in linear regression models with a mix of exogenous and endogenous regressors, FWL theorem-type results hold for the k-class estimators (including LIML) and the two-step optimal GMM estimator.