考虑轴荷转移的高速列车电/气制动力优化分配方法

Feng Guo, Jing He
{"title":"考虑轴荷转移的高速列车电/气制动力优化分配方法","authors":"Feng Guo,&nbsp;Jing He","doi":"10.1016/j.hspr.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Reasonable distribution of braking force is a factor for a smooth, safe, and comfortable braking of trains. A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies. In this method, the braking strategy gives priority to the use of electric braking force. The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer, and then the adhesion of the train is estimated in real time. Next, with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles, a linear programming distribution function is constructed. The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion. Finally, the braking force is dynamically allocated. The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle, but also considers the adhesion difference of each wheelset. The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.</p></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"2 2","pages":"Pages 77-84"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949867824000308/pdfft?md5=f893352645e3b14ecb17ccb28774ec7e&pid=1-s2.0-S2949867824000308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal allocation method of electric/air braking force of high-speed train considering axle load transfer\",\"authors\":\"Feng Guo,&nbsp;Jing He\",\"doi\":\"10.1016/j.hspr.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reasonable distribution of braking force is a factor for a smooth, safe, and comfortable braking of trains. A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies. In this method, the braking strategy gives priority to the use of electric braking force. The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer, and then the adhesion of the train is estimated in real time. Next, with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles, a linear programming distribution function is constructed. The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion. Finally, the braking force is dynamically allocated. The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle, but also considers the adhesion difference of each wheelset. The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.</p></div>\",\"PeriodicalId\":100607,\"journal\":{\"name\":\"High-speed Railway\",\"volume\":\"2 2\",\"pages\":\"Pages 77-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949867824000308/pdfft?md5=f893352645e3b14ecb17ccb28774ec7e&pid=1-s2.0-S2949867824000308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-speed Railway\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949867824000308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949867824000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合理分配制动力是保证列车制动平稳、安全、舒适的因素之一。本文提出了一种电-气制动力动态优化分配策略,以解决现有高速列车电-气制动力优化分配策略中未考虑列车轮对附着力差异的问题。在该方法中,制动策略优先使用电制动力。通过分析单列列车在制动过程中的受力模型,计算出轴载传递后各轮对轮对与钢轨之间附着力的变化,进而实时估算出列车的附着力。接下来,以挂车/机动车总附着力利用率最大化为目标,构建了线性规划分布函数。根据轮对附着力的变化时间点更新函数中各列车附着力利用率的比例系数和制动力的应用上限。最后,动态分配制动力。Matlab/Simulink 的仿真结果表明,所提出的算法不仅利用了每辆挂车不同的附着力上限来减少机动车所承担的制动力总量,而且还考虑了每个轮组的附着力差异。该策略可有效降低机动车在制动过程中的风险和时间,提高列车制动的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal allocation method of electric/air braking force of high-speed train considering axle load transfer

Reasonable distribution of braking force is a factor for a smooth, safe, and comfortable braking of trains. A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies. In this method, the braking strategy gives priority to the use of electric braking force. The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer, and then the adhesion of the train is estimated in real time. Next, with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles, a linear programming distribution function is constructed. The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion. Finally, the braking force is dynamically allocated. The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle, but also considers the adhesion difference of each wheelset. The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信