甲型 H9N2 低致病性禽流感病毒的全球抗原谱和疫苗推荐策略。

IF 14.3 1区 医学 Q1 INFECTIOUS DISEASES
Ke Zhai , Jinze Dong , Jinfeng Zeng , Peiwen Cheng , Xinsheng Wu , Wenjie Han , Yilin Chen , Zekai Qiu , Yong Zhou , Juan Pu , Taijiao Jiang , Xiangjun Du
{"title":"甲型 H9N2 低致病性禽流感病毒的全球抗原谱和疫苗推荐策略。","authors":"Ke Zhai ,&nbsp;Jinze Dong ,&nbsp;Jinfeng Zeng ,&nbsp;Peiwen Cheng ,&nbsp;Xinsheng Wu ,&nbsp;Wenjie Han ,&nbsp;Yilin Chen ,&nbsp;Zekai Qiu ,&nbsp;Yong Zhou ,&nbsp;Juan Pu ,&nbsp;Taijiao Jiang ,&nbsp;Xiangjun Du","doi":"10.1016/j.jinf.2024.106199","DOIUrl":null,"url":null,"abstract":"<div><p>The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.</p></div>","PeriodicalId":50180,"journal":{"name":"Journal of Infection","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163445324001336/pdfft?md5=4d3ba68c35e44fb3d88901c747ed8f3a&pid=1-s2.0-S0163445324001336-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Global antigenic landscape and vaccine recommendation strategy for low pathogenic avian influenza A (H9N2) viruses\",\"authors\":\"Ke Zhai ,&nbsp;Jinze Dong ,&nbsp;Jinfeng Zeng ,&nbsp;Peiwen Cheng ,&nbsp;Xinsheng Wu ,&nbsp;Wenjie Han ,&nbsp;Yilin Chen ,&nbsp;Zekai Qiu ,&nbsp;Yong Zhou ,&nbsp;Juan Pu ,&nbsp;Taijiao Jiang ,&nbsp;Xiangjun Du\",\"doi\":\"10.1016/j.jinf.2024.106199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.</p></div>\",\"PeriodicalId\":50180,\"journal\":{\"name\":\"Journal of Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0163445324001336/pdfft?md5=4d3ba68c35e44fb3d88901c747ed8f3a&pid=1-s2.0-S0163445324001336-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0163445324001336\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163445324001336","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

H9N2 禽流感病毒(AIVs)的持续流行对导致新的大流行构成了重大威胁。鉴于 H9N2 禽流感病毒抗原性在时间和空间上的不确定性,疫苗的免疫保护效率仍面临挑战。通过开发一种名为 PREDAC-H9 的 H9N2 艾滋病毒抗原性预测方法,绘制了 H9N2 艾滋病毒的全球抗原图谱。PREDAC-H9 利用了带有 14 个精心设计特征的 XGBoost 模型。建立并评估的 XGBoost 模型可预测任意两种病毒之间的抗原关系,其准确率、精确度、召回率、F1 值和曲线下面积(AUC)分别高达 81.1%、81.4%、81.3%、81.1% 和 89.4%。然后,根据对 1966 年至 2022 年 H9N2 甲型禽流感病毒抗原关系的预测,构建了抗原相关网络(ACnet),并确定了 10 个主要的抗原群。其中,中国在过去十年中产生了四个新的集群,显示了中国独特的复杂情况。针对这一情况,我们应用PREDAC-H9计算了集群转变的决定性位点,筛选出交叉保护谱较高的病毒株,从而为疫苗推荐提供分子内参考。建议的模型将减少临床监测工作量,并为 H9N2 甲型禽流感的监测和控制提供有用的工具。数据和材料的可用性:支持本研究结果的数据见补充数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global antigenic landscape and vaccine recommendation strategy for low pathogenic avian influenza A (H9N2) viruses

The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Infection
Journal of Infection 医学-传染病学
CiteScore
45.90
自引率
3.20%
发文量
475
审稿时长
16 days
期刊介绍: The Journal of Infection publishes original papers on all aspects of infection - clinical, microbiological and epidemiological. The Journal seeks to bring together knowledge from all specialties involved in infection research and clinical practice, and present the best work in the ever-changing field of infection. Each issue brings you Editorials that describe current or controversial topics of interest, high quality Reviews to keep you in touch with the latest developments in specific fields of interest, an Epidemiology section reporting studies in the hospital and the general community, and a lively correspondence section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信