Jong Seung Lim, Eunkyoung Kim, Jin-Sook Song, Sunjoo Ahn
{"title":"能量应激介导的 AMPK 激活可敏化三阴性乳腺癌中的 MPS1 激酶抑制。","authors":"Jong Seung Lim, Eunkyoung Kim, Jin-Sook Song, Sunjoo Ahn","doi":"10.3892/or.2024.8760","DOIUrl":null,"url":null,"abstract":"<p><p>Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and <i>in vivo</i> xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy‑stress‑mediated activation of AMPK sensitizes MPS1 kinase inhibition in triple‑negative breast cancer.\",\"authors\":\"Jong Seung Lim, Eunkyoung Kim, Jin-Sook Song, Sunjoo Ahn\",\"doi\":\"10.3892/or.2024.8760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and <i>in vivo</i> xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.</p>\",\"PeriodicalId\":19527,\"journal\":{\"name\":\"Oncology reports\",\"volume\":\"52 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/or.2024.8760\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2024.8760","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Energy‑stress‑mediated activation of AMPK sensitizes MPS1 kinase inhibition in triple‑negative breast cancer.
Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.
期刊介绍:
Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.