Todd Wightman, Artur Muszyński, Simon J Kelly, John T Sullivan, Caitlan J Smart, Jens Stougaard, Shaun Ferguson, Parastoo Azadi, Clive W Ronson
{"title":"根瘤菌分泌截短的外多糖会严重破坏中生代根瘤菌与莲藕的共生关系。","authors":"Todd Wightman, Artur Muszyński, Simon J Kelly, John T Sullivan, Caitlan J Smart, Jens Stougaard, Shaun Ferguson, Parastoo Azadi, Clive W Ronson","doi":"10.1094/MPMI-03-24-0024-R","DOIUrl":null,"url":null,"abstract":"<p><p>The symbiosis between <i>Mesorhizobium japonicum</i> R7A and <i>Lotus japonicus</i> Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A <i>exoB</i> mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on <i>L. japonicus</i> Gifu after a delay, whereas <i>exoU</i> mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the <i>exoU</i> mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar Δ<i>exoA</i> mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the <i>exoU</i> mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the Δ<i>exoA</i> mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, Δ<i>exoYF</i> and polar <i>exoA</i> and <i>exoL</i> mutants have a similar phenotype to <i>exoB</i> mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhizobial Secretion of Truncated Exopolysaccharides Severely Impairs the <i>Mesorhizobium-Lotus</i> Symbiosis.\",\"authors\":\"Todd Wightman, Artur Muszyński, Simon J Kelly, John T Sullivan, Caitlan J Smart, Jens Stougaard, Shaun Ferguson, Parastoo Azadi, Clive W Ronson\",\"doi\":\"10.1094/MPMI-03-24-0024-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The symbiosis between <i>Mesorhizobium japonicum</i> R7A and <i>Lotus japonicus</i> Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A <i>exoB</i> mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on <i>L. japonicus</i> Gifu after a delay, whereas <i>exoU</i> mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the <i>exoU</i> mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar Δ<i>exoA</i> mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the <i>exoU</i> mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the Δ<i>exoA</i> mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, Δ<i>exoYF</i> and polar <i>exoA</i> and <i>exoL</i> mutants have a similar phenotype to <i>exoB</i> mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1094/MPMI-03-24-0024-R\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-03-24-0024-R","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0