Nawel El Hanafi, Aida Zaabar, Farid Aoudjit, Hakim Lounici
{"title":"紫外线/H2O2 工艺对碱性品红的脱色增效:利用盒式贝肯设计进行优化和建模。","authors":"Nawel El Hanafi, Aida Zaabar, Farid Aoudjit, Hakim Lounici","doi":"10.1080/10934529.2024.2369432","DOIUrl":null,"url":null,"abstract":"<p><p>The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H<sub>2</sub>O<sub>2</sub> process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H<sub>2</sub>O<sub>2</sub>) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H<sub>2</sub>O<sub>2</sub> performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R<sup>2</sup> > 0.98). In the BBD predictions, the optimal conditions in the UV/H<sub>2</sub>O<sub>2</sub> process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"251-259"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decolorization enhancement of basic fuchsin by UV/H<sub>2</sub>O<sub>2</sub> process: optimization and modeling using Box Behnken design.\",\"authors\":\"Nawel El Hanafi, Aida Zaabar, Farid Aoudjit, Hakim Lounici\",\"doi\":\"10.1080/10934529.2024.2369432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H<sub>2</sub>O<sub>2</sub> process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H<sub>2</sub>O<sub>2</sub>) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H<sub>2</sub>O<sub>2</sub> performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R<sup>2</sup> > 0.98). In the BBD predictions, the optimal conditions in the UV/H<sub>2</sub>O<sub>2</sub> process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"251-259\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2369432\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2369432","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Decolorization enhancement of basic fuchsin by UV/H2O2 process: optimization and modeling using Box Behnken design.
The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H2O2 process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H2O2) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H2O2 performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R2 > 0.98). In the BBD predictions, the optimal conditions in the UV/H2O2 process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.