Xiao-Tian Zhang, Chun-Lei Ji, Yu-Juan Fu, Yue Yang, Guang-Yu Xu
{"title":"灵芝活性成分的筛选及其改善学习和记忆障碍的分子机制的破译。","authors":"Xiao-Tian Zhang, Chun-Lei Ji, Yu-Juan Fu, Yue Yang, Guang-Yu Xu","doi":"10.1042/BSR20232068","DOIUrl":null,"url":null,"abstract":"<p><p>Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders.\",\"authors\":\"Xiao-Tian Zhang, Chun-Lei Ji, Yu-Juan Fu, Yue Yang, Guang-Yu Xu\",\"doi\":\"10.1042/BSR20232068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20232068\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20232068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
学习和记忆障碍(LMI)是一种常见的中枢神经系统退化性疾病。最近,越来越多的研究表明灵芝(GL)可以改善 LMI 的症状。通过 TCMSP(中药系统药理学数据库与分析平台)和 BATMAN-TCM(中药分子机理生物信息学分析工具)数据库筛选灵芝中的有效成分及其相应的靶点,并通过 GeneCard(GeneCards 人类基因数据库)和 DrugBank 搜索潜在的 LMI 靶点。通过DAVID(Database for Annotation Visualization and Integrated Discovery,注释可视化和综合发现数据库)对常见靶点进行GO(Gene Ontology,基因本体)功能富集分析和KEGG(Kyoto Encyclopedia of Genes and Genomes,京都基因和基因组百科全书)通路注释分析,以阐明GL中有效成分的潜在分子作用机制。通过Western印迹验证了TNF蛋白;筛选出GL中的21种活性成分和142个相应的靶标,其中包括59个与LMI共享的靶标。GO功能注释结果显示的448个生物过程和KEGG富集分析显示的55个信号通路与GL改善LMI有关,其中阿尔茨海默病通路的相关性最高,TNF是最重要的蛋白;TNF可改善LMI。
Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders.
Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics