Kismet/CHD7/CHD8影响黑腹果蝇的肠道微生物群、力学和肠-脑轴。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2025-03-18 Epub Date: 2024-06-19 DOI:10.1016/j.bpj.2024.06.016
Angelo Niosi, Nguyên Henry Võ, Punithavathi Sundaramurthy, Chloe Welch, Aliyah Penn, Yelena Yuldasheva, Adam Alfareh, Kaitlyn Rausch, Takhmina Amin-Rahbar, Jeffery Cavanaugh, Prince Yadav, Stephanie Peterson, Raina Brown, Alain Hu, Any Ardon-Castro, Darren Nguyen, Robert Crawford, Wendy Lee, Eliza J Morris, Mikkel Herholdt Jensen, Kimberly Mulligan
{"title":"Kismet/CHD7/CHD8影响黑腹果蝇的肠道微生物群、力学和肠-脑轴。","authors":"Angelo Niosi, Nguyên Henry Võ, Punithavathi Sundaramurthy, Chloe Welch, Aliyah Penn, Yelena Yuldasheva, Adam Alfareh, Kaitlyn Rausch, Takhmina Amin-Rahbar, Jeffery Cavanaugh, Prince Yadav, Stephanie Peterson, Raina Brown, Alain Hu, Any Ardon-Castro, Darren Nguyen, Robert Crawford, Wendy Lee, Eliza J Morris, Mikkel Herholdt Jensen, Kimberly Mulligan","doi":"10.1016/j.bpj.2024.06.016","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"933-941"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster.\",\"authors\":\"Angelo Niosi, Nguyên Henry Võ, Punithavathi Sundaramurthy, Chloe Welch, Aliyah Penn, Yelena Yuldasheva, Adam Alfareh, Kaitlyn Rausch, Takhmina Amin-Rahbar, Jeffery Cavanaugh, Prince Yadav, Stephanie Peterson, Raina Brown, Alain Hu, Any Ardon-Castro, Darren Nguyen, Robert Crawford, Wendy Lee, Eliza J Morris, Mikkel Herholdt Jensen, Kimberly Mulligan\",\"doi\":\"10.1016/j.bpj.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"933-941\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.06.016\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.06.016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

肠道微生物组影响大脑和神经元的发育,并可能导致神经发育障碍的病理生理学。然而,目前还不清楚与这类疾病相关的风险基因如何影响肠道生理,从而影响微生物的定植,也不清楚肠道组织的机械特性如何在肠道-大脑双向交流中发挥作用。为了解决这个问题,我们利用了基因 "kismet "发生无效突变的黑腹果蝇,"kismet "是染色体域螺旋酶DNA结合蛋白(CHD)家族成员CHD7和CHD8的直向同源物。在人类中,这些基因是神经发育障碍的风险基因,并同时伴有胃肠道症状。我们发现kismet突变体苍蝇的胃肠道转运时间显著增加,这表明kismet与脊椎动物中的CHD7/CHD8存在功能同源性。对解剖的肠道组织进行流变学表征后发现,kismet突变体肠道的力学弹性、应变僵化行为和拉伸强度都发生了显著变化。通过 16S rRNA 元基因组测序,我们还发现 kismet 突变体肠道微生物群在各个分类水平上的多样性和丰度都有所降低。为了研究肠道微生物群与行为之间的联系,我们消耗了 kismet 突变体和对照组苍蝇的肠道微生物群,并量化了苍蝇的求偶行为。消耗肠道微生物群能挽救 kismet 突变体苍蝇的求偶缺陷,这表明肠道微生物群与行为之间存在联系。与此形成鲜明对比的是,消耗对照品系的肠道微生物群会降低求偶活动,这表明抗生素治疗会对行为产生不同的影响,而且可能取决于消耗前肠道微生物菌群失调的状况。我们认为,Kismet 会影响多种肠道表型,这些表型有助于肠道-微生物-大脑轴影响行为。我们还认为,肠道组织力学应被视为肠道-大脑沟通环路中的一个要素,它既受肠道微生物组的影响,也可能影响肠道微生物组和神经发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster.

The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信