Razia Batool, Maria Soler, Rukmani Singh, Laura M Lechuga
{"title":"用于快速准确评估检查点抑制剂免疫疗法的新型仿生纳米光传感器。","authors":"Razia Batool, Maria Soler, Rukmani Singh, Laura M Lechuga","doi":"10.1007/s00216-024-05398-3","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC<sub>50</sub>) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7295-7304"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584438/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel biomimetic nanoplasmonic sensor for rapid and accurate evaluation of checkpoint inhibitor immunotherapy.\",\"authors\":\"Razia Batool, Maria Soler, Rukmani Singh, Laura M Lechuga\",\"doi\":\"10.1007/s00216-024-05398-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC<sub>50</sub>) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"7295-7304\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05398-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05398-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A novel biomimetic nanoplasmonic sensor for rapid and accurate evaluation of checkpoint inhibitor immunotherapy.
Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC50) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.