Umair Baig*, Abdul Waheed*, Jamilu Usman and Isam H. Aljundi,
{"title":"制造具有特殊表面润湿特性的定制膜,实现高效的原油水包水乳液分离。","authors":"Umair Baig*, Abdul Waheed*, Jamilu Usman and Isam H. Aljundi, ","doi":"10.1021/acsami.4c05543","DOIUrl":null,"url":null,"abstract":"<p >Treating oily wastewater streams such as produced water has a huge potential to resolve the issue of wastewater disposal and generate useful water for reuse. Among different techniques employed for oily wastewater (oil-in-water; O/W emulsion) treatment, membrane-based separation is advantageous owing to its lower energy consumption, recycling, ease of operation, and wider scope of tuning the active layer chemistry for enhanced performance. In line with the possibilities of enhancing the performance of the membranes for efficient O/W emulsion separation, the current work is designed to yield five different variants of polyaniline (PANI) active layers with special surface wettability features (superhyrophilic and underwater superoleophobic) on a ceramic alumina support. To achieve variants of PANI on ceramic alumina supports, emulsion polymerization was carried out, and different concentrations of initiator ammonium persulfate (APS) were applied to lead to PANI-A@Aluminum Oxide membrane, PANI-B@Aluminum Oxide membrane, PANI-C@Aluminum Oxide membrane, PANI-D@Aluminum Oxide membrane, and PANI-E@Aluminum Oxide membrane corresponding to 0.15, 0.25, 0.35, 0.5, and 1.0 M concentrations of initiator. The variation in initiator concentration resulted in different PANI growth patterns; hence, the resultant membranes showed different structural, physical, and performance features. Different characterization techniques including <sup>1</sup>H NMR, SEM, FE-TEM, AFM, water contact angle, XRD, EDX, and ATR-FTIR confirmed a more uniform and continuous growth of PANI (PANI-B) using a 0.25 M initiator concentration. The resultant PANI-B@Aluminum Oxide membrane showed an excellent surfactant stabilized crude O/W emulsion separation reaching >99% with a permeate flux of 2154 L m<sup>–2</sup> h<sup>–1</sup> (LMH) at 4 bar using a 100 ppm surfactant stabilized crude oil-in-water emulsion. The fouling and cleaning cycles revealed that the membrane can be reused with a 70% recovery of the initial permeate flux.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 26","pages":"33504–33516"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Tailored Membranes with Special Surface Wettability Features for Highly Efficient Crude Oil-in-Water Emulsion Separation\",\"authors\":\"Umair Baig*, Abdul Waheed*, Jamilu Usman and Isam H. Aljundi, \",\"doi\":\"10.1021/acsami.4c05543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Treating oily wastewater streams such as produced water has a huge potential to resolve the issue of wastewater disposal and generate useful water for reuse. Among different techniques employed for oily wastewater (oil-in-water; O/W emulsion) treatment, membrane-based separation is advantageous owing to its lower energy consumption, recycling, ease of operation, and wider scope of tuning the active layer chemistry for enhanced performance. In line with the possibilities of enhancing the performance of the membranes for efficient O/W emulsion separation, the current work is designed to yield five different variants of polyaniline (PANI) active layers with special surface wettability features (superhyrophilic and underwater superoleophobic) on a ceramic alumina support. To achieve variants of PANI on ceramic alumina supports, emulsion polymerization was carried out, and different concentrations of initiator ammonium persulfate (APS) were applied to lead to PANI-A@Aluminum Oxide membrane, PANI-B@Aluminum Oxide membrane, PANI-C@Aluminum Oxide membrane, PANI-D@Aluminum Oxide membrane, and PANI-E@Aluminum Oxide membrane corresponding to 0.15, 0.25, 0.35, 0.5, and 1.0 M concentrations of initiator. The variation in initiator concentration resulted in different PANI growth patterns; hence, the resultant membranes showed different structural, physical, and performance features. Different characterization techniques including <sup>1</sup>H NMR, SEM, FE-TEM, AFM, water contact angle, XRD, EDX, and ATR-FTIR confirmed a more uniform and continuous growth of PANI (PANI-B) using a 0.25 M initiator concentration. The resultant PANI-B@Aluminum Oxide membrane showed an excellent surfactant stabilized crude O/W emulsion separation reaching >99% with a permeate flux of 2154 L m<sup>–2</sup> h<sup>–1</sup> (LMH) at 4 bar using a 100 ppm surfactant stabilized crude oil-in-water emulsion. The fouling and cleaning cycles revealed that the membrane can be reused with a 70% recovery of the initial permeate flux.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 26\",\"pages\":\"33504–33516\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c05543\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c05543","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of Tailored Membranes with Special Surface Wettability Features for Highly Efficient Crude Oil-in-Water Emulsion Separation
Treating oily wastewater streams such as produced water has a huge potential to resolve the issue of wastewater disposal and generate useful water for reuse. Among different techniques employed for oily wastewater (oil-in-water; O/W emulsion) treatment, membrane-based separation is advantageous owing to its lower energy consumption, recycling, ease of operation, and wider scope of tuning the active layer chemistry for enhanced performance. In line with the possibilities of enhancing the performance of the membranes for efficient O/W emulsion separation, the current work is designed to yield five different variants of polyaniline (PANI) active layers with special surface wettability features (superhyrophilic and underwater superoleophobic) on a ceramic alumina support. To achieve variants of PANI on ceramic alumina supports, emulsion polymerization was carried out, and different concentrations of initiator ammonium persulfate (APS) were applied to lead to PANI-A@Aluminum Oxide membrane, PANI-B@Aluminum Oxide membrane, PANI-C@Aluminum Oxide membrane, PANI-D@Aluminum Oxide membrane, and PANI-E@Aluminum Oxide membrane corresponding to 0.15, 0.25, 0.35, 0.5, and 1.0 M concentrations of initiator. The variation in initiator concentration resulted in different PANI growth patterns; hence, the resultant membranes showed different structural, physical, and performance features. Different characterization techniques including 1H NMR, SEM, FE-TEM, AFM, water contact angle, XRD, EDX, and ATR-FTIR confirmed a more uniform and continuous growth of PANI (PANI-B) using a 0.25 M initiator concentration. The resultant PANI-B@Aluminum Oxide membrane showed an excellent surfactant stabilized crude O/W emulsion separation reaching >99% with a permeate flux of 2154 L m–2 h–1 (LMH) at 4 bar using a 100 ppm surfactant stabilized crude oil-in-water emulsion. The fouling and cleaning cycles revealed that the membrane can be reused with a 70% recovery of the initial permeate flux.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.