用于无枝晶锌-离子储能的纳米级雪佛尔相:揭示相变

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-06-20 DOI:10.1039/D4NR01238K
Amr Elgendy, Athanasios A. Papaderakis, Andinet Ejigu, Katharina Helmbrecht, Ben F. Spencer, Axel Groß, Alex S. Walton, David J. Lewis and Robert A. W. Dryfe
{"title":"用于无枝晶锌-离子储能的纳米级雪佛尔相:揭示相变","authors":"Amr Elgendy, Athanasios A. Papaderakis, Andinet Ejigu, Katharina Helmbrecht, Ben F. Spencer, Axel Groß, Alex S. Walton, David J. Lewis and Robert A. W. Dryfe","doi":"10.1039/D4NR01238K","DOIUrl":null,"url":null,"abstract":"<p >The nanoscale form of the Chevrel phase, Mo<small><sub>6</sub></small>S<small><sub>8</sub></small>, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS<small><sub>2</sub></small> and TiSe<small><sub>2</sub></small>. <em>In situ</em> Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn<small><sub>2.9</sub></small>Mo<small><sub>15</sub></small>S<small><sub>19</sub></small> (Zn<small><sub>1.6</sub></small>Mo<small><sub>6</sub></small>S<small><sub>7.6</sub></small>) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g<small><sup>−1</sup></small> and an energy density of 43.8 W h kg<small><sup>−1</sup></small> at a specific current density of 0.2 A g<small><sup>−1</sup></small>. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g<small><sup>−1</sup></small> with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo<small><sub>6</sub></small>S<small><sub>8</sub></small> anode, in stark contrast to the state-of-the-art zinc electrode.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nr/d4nr01238k?page=search","citationCount":"0","resultStr":"{\"title\":\"Nanosized Chevrel phases for dendrite-free zinc–ion based energy storage: unraveling the phase transformations†\",\"authors\":\"Amr Elgendy, Athanasios A. Papaderakis, Andinet Ejigu, Katharina Helmbrecht, Ben F. Spencer, Axel Groß, Alex S. Walton, David J. Lewis and Robert A. W. Dryfe\",\"doi\":\"10.1039/D4NR01238K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The nanoscale form of the Chevrel phase, Mo<small><sub>6</sub></small>S<small><sub>8</sub></small>, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS<small><sub>2</sub></small> and TiSe<small><sub>2</sub></small>. <em>In situ</em> Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn<small><sub>2.9</sub></small>Mo<small><sub>15</sub></small>S<small><sub>19</sub></small> (Zn<small><sub>1.6</sub></small>Mo<small><sub>6</sub></small>S<small><sub>7.6</sub></small>) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g<small><sup>−1</sup></small> and an energy density of 43.8 W h kg<small><sup>−1</sup></small> at a specific current density of 0.2 A g<small><sup>−1</sup></small>. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g<small><sup>−1</sup></small> with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo<small><sub>6</sub></small>S<small><sub>8</sub></small> anode, in stark contrast to the state-of-the-art zinc electrode.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/nr/d4nr01238k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01238k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01238k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在水性锌离子混合超级电容器(ZIHSCs)中,Chevrel 相的纳米级形式 Mo6S8 被证明是一种高效的无锌阳极。当该材料的尺寸接近纳米级时,其独特的形态特征导致了快速的锌插层动力学,超过了一些最有前途的材料(如 TiS2 和 TiSe2)的离子传输速率。我们将原位拉曼光谱、死后 X 射线衍射、硬 X 射线光电子能谱和密度泛函理论(DFT)计算结合起来,以了解锌离子(脱)插层过程的整体机制。发现了以前未知的缺硫 Zn2.9Mo15S19 (Zn1.6Mo6S7.6) 相的形成,从而重新评估了(脱)插层过程的机理。由活性炭(YEC-8A)正极组成的完整电池在 0.2 A/g 的特定电流密度下可产生 38 mAh/g 的电池容量和 43.8 Wh/kg 的能量密度。在 3 A/g 的条件下,该装置的循环稳定性极佳,可循环使用 8000 次,库仑效率接近 100%。死后显微镜研究表明,纳米 Mo6S8 阳极没有形成枝晶,这与最先进的锌电极形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanosized Chevrel phases for dendrite-free zinc–ion based energy storage: unraveling the phase transformations†

Nanosized Chevrel phases for dendrite-free zinc–ion based energy storage: unraveling the phase transformations†

The nanoscale form of the Chevrel phase, Mo6S8, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS2 and TiSe2. In situ Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn2.9Mo15S19 (Zn1.6Mo6S7.6) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g−1 and an energy density of 43.8 W h kg−1 at a specific current density of 0.2 A g−1. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g−1 with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo6S8 anode, in stark contrast to the state-of-the-art zinc electrode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信