爱因斯坦方程的高频解

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Cécile Huneau and Jonathan Luk
{"title":"爱因斯坦方程的高频解","authors":"Cécile Huneau and Jonathan Luk","doi":"10.1088/1361-6382/ad5487","DOIUrl":null,"url":null,"abstract":"We review recent mathematical results concerning the high-frequency solutions to the Einstein vacuum equations and the limits of these solutions. In particular, we focus on two conjectures of Burnett, which attempt to give an exact characterization of high-frequency limits of vacuum spacetimes as solutions to the Einstein–massless Vlasov system. Some open problems and future directions are discussed.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency solutions to the Einstein equations\",\"authors\":\"Cécile Huneau and Jonathan Luk\",\"doi\":\"10.1088/1361-6382/ad5487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review recent mathematical results concerning the high-frequency solutions to the Einstein vacuum equations and the limits of these solutions. In particular, we focus on two conjectures of Burnett, which attempt to give an exact characterization of high-frequency limits of vacuum spacetimes as solutions to the Einstein–massless Vlasov system. Some open problems and future directions are discussed.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad5487\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad5487","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了有关爱因斯坦真空方程高频解及其极限的最新数学成果。我们特别关注伯内特的两个猜想,这两个猜想试图给出作为爱因斯坦无质量弗拉索夫系统解的真空时空的高频极限的精确特征。我们还讨论了一些悬而未决的问题和未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-frequency solutions to the Einstein equations
We review recent mathematical results concerning the high-frequency solutions to the Einstein vacuum equations and the limits of these solutions. In particular, we focus on two conjectures of Burnett, which attempt to give an exact characterization of high-frequency limits of vacuum spacetimes as solutions to the Einstein–massless Vlasov system. Some open problems and future directions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信