UDT:用于蛛网膜下腔出血图像分割的 U 形可变形变换器

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Xie, Lianghao Jin, Shiqi Hua, Hao Sun, Bo Sun, Zhigang Tu, Jun Liu
{"title":"UDT:用于蛛网膜下腔出血图像分割的 U 形可变形变换器","authors":"Wei Xie,&nbsp;Lianghao Jin,&nbsp;Shiqi Hua,&nbsp;Hao Sun,&nbsp;Bo Sun,&nbsp;Zhigang Tu,&nbsp;Jun Liu","doi":"10.1049/cit2.12302","DOIUrl":null,"url":null,"abstract":"<p>Subarachnoid haemorrhage (SAH), mostly caused by the rupture of intracranial aneurysm, is a common disease with a high fatality rate. SAH lesions are generally diffusely distributed, showing a variety of scales with irregular edges. The complex characteristics of lesions make SAH segmentation a challenging task. To cope with these difficulties, a u-shaped deformable transformer (UDT) is proposed for SAH segmentation. Specifically, first, a multi-scale deformable attention (MSDA) module is exploited to model the diffuseness and scale-variant characteristics of SAH lesions, where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi-scale features. Second, the cross deformable attention-based skip connection (CDASC) module is designed to model the irregular edge characteristic of SAH lesions, where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features. Third, the MSDA and CDASC modules are embedded into the backbone Res-UNet to construct the proposed UDT. Extensive experiments are conducted on the self-built SAH-CT dataset and two public medical datasets (GlaS and MoNuSeg). Experimental results show that the presented UDT achieves the state-of-the-art performance.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 3","pages":"756-768"},"PeriodicalIF":8.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12302","citationCount":"0","resultStr":"{\"title\":\"UDT: U-shaped deformable transformer for subarachnoid haemorrhage image segmentation\",\"authors\":\"Wei Xie,&nbsp;Lianghao Jin,&nbsp;Shiqi Hua,&nbsp;Hao Sun,&nbsp;Bo Sun,&nbsp;Zhigang Tu,&nbsp;Jun Liu\",\"doi\":\"10.1049/cit2.12302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subarachnoid haemorrhage (SAH), mostly caused by the rupture of intracranial aneurysm, is a common disease with a high fatality rate. SAH lesions are generally diffusely distributed, showing a variety of scales with irregular edges. The complex characteristics of lesions make SAH segmentation a challenging task. To cope with these difficulties, a u-shaped deformable transformer (UDT) is proposed for SAH segmentation. Specifically, first, a multi-scale deformable attention (MSDA) module is exploited to model the diffuseness and scale-variant characteristics of SAH lesions, where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi-scale features. Second, the cross deformable attention-based skip connection (CDASC) module is designed to model the irregular edge characteristic of SAH lesions, where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features. Third, the MSDA and CDASC modules are embedded into the backbone Res-UNet to construct the proposed UDT. Extensive experiments are conducted on the self-built SAH-CT dataset and two public medical datasets (GlaS and MoNuSeg). Experimental results show that the presented UDT achieves the state-of-the-art performance.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 3\",\"pages\":\"756-768\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12302\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12302\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12302","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

蛛网膜下腔出血(SAH)主要由颅内动脉瘤破裂引起,是一种致死率很高的常见疾病。SAH 病变一般呈弥漫性分布,表现为边缘不规则的各种鳞片。病变的复杂特征使得 SAH 分割成为一项具有挑战性的任务。为了应对这些困难,我们提出了一种用于 SAH 分割的 U 形可变形变换器(UDT)。具体来说,首先,利用多尺度可变形注意(MSDA)模块来模拟 SAH 病变的弥散性和尺度变化特征,其中 MSDA 模块可以融合不同尺度的特征,并动态调整每个元素的注意场,以生成具有区分性的多尺度特征。其次,设计了基于交叉变形注意的跳接(CDASC)模块来模拟 SAH 病变的不规则边缘特征,CDASC 模块可以利用编码器特征的空间细节来完善解码器特征的空间信息。第三,将 MSDA 和 CDASC 模块嵌入到主干 Res-UNet 中,以构建所建议的 UDT。在自建的 SAH-CT 数据集和两个公共医疗数据集(GlaS 和 MoNuSeg)上进行了广泛的实验。实验结果表明,所提出的 UDT 达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

UDT: U-shaped deformable transformer for subarachnoid haemorrhage image segmentation

UDT: U-shaped deformable transformer for subarachnoid haemorrhage image segmentation

Subarachnoid haemorrhage (SAH), mostly caused by the rupture of intracranial aneurysm, is a common disease with a high fatality rate. SAH lesions are generally diffusely distributed, showing a variety of scales with irregular edges. The complex characteristics of lesions make SAH segmentation a challenging task. To cope with these difficulties, a u-shaped deformable transformer (UDT) is proposed for SAH segmentation. Specifically, first, a multi-scale deformable attention (MSDA) module is exploited to model the diffuseness and scale-variant characteristics of SAH lesions, where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi-scale features. Second, the cross deformable attention-based skip connection (CDASC) module is designed to model the irregular edge characteristic of SAH lesions, where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features. Third, the MSDA and CDASC modules are embedded into the backbone Res-UNet to construct the proposed UDT. Extensive experiments are conducted on the self-built SAH-CT dataset and two public medical datasets (GlaS and MoNuSeg). Experimental results show that the presented UDT achieves the state-of-the-art performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信