Iftikhar Hussain , Sumanta Sahoo , Muhammad Sufyan Javed , Jian Lu , Kaili Zhang
{"title":"用于下一代可穿戴储能应用的柔性二维 MXenes","authors":"Iftikhar Hussain , Sumanta Sahoo , Muhammad Sufyan Javed , Jian Lu , Kaili Zhang","doi":"10.1016/j.mser.2024.100814","DOIUrl":null,"url":null,"abstract":"<div><p>The rise of wearable electronics has generated immense opportunity for the researchers to tailor the expanding demand of future electronics. MXenes, a family of two-dimensional (2D) transition-metal carbides and nitrides, exhibit excellent flexibility and other commendable properties, rendering them highly suitable for wearable electronics. This review primarily focuses on the synthesis of MXenes for flexible and wearable application, including methods such as electrospinning, wet-spinning, bi-scrolling, 3D printing, and coating. Furthermore, the review comprehensively discusses the significant advancements and progress made in the field of flexible and wearable MXene-based supercapacitors. It also addresses the challenges and future prospects associated with MXenes as wearable energy storage devices. The integration and development of MXenes-based energy storage devices into other wearable devices holds promise for the future of the electronic industry.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100814"},"PeriodicalIF":31.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible 2D MXenes for wearable next-generation energy storage applications\",\"authors\":\"Iftikhar Hussain , Sumanta Sahoo , Muhammad Sufyan Javed , Jian Lu , Kaili Zhang\",\"doi\":\"10.1016/j.mser.2024.100814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rise of wearable electronics has generated immense opportunity for the researchers to tailor the expanding demand of future electronics. MXenes, a family of two-dimensional (2D) transition-metal carbides and nitrides, exhibit excellent flexibility and other commendable properties, rendering them highly suitable for wearable electronics. This review primarily focuses on the synthesis of MXenes for flexible and wearable application, including methods such as electrospinning, wet-spinning, bi-scrolling, 3D printing, and coating. Furthermore, the review comprehensively discusses the significant advancements and progress made in the field of flexible and wearable MXene-based supercapacitors. It also addresses the challenges and future prospects associated with MXenes as wearable energy storage devices. The integration and development of MXenes-based energy storage devices into other wearable devices holds promise for the future of the electronic industry.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"160 \",\"pages\":\"Article 100814\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000445\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000445","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexible 2D MXenes for wearable next-generation energy storage applications
The rise of wearable electronics has generated immense opportunity for the researchers to tailor the expanding demand of future electronics. MXenes, a family of two-dimensional (2D) transition-metal carbides and nitrides, exhibit excellent flexibility and other commendable properties, rendering them highly suitable for wearable electronics. This review primarily focuses on the synthesis of MXenes for flexible and wearable application, including methods such as electrospinning, wet-spinning, bi-scrolling, 3D printing, and coating. Furthermore, the review comprehensively discusses the significant advancements and progress made in the field of flexible and wearable MXene-based supercapacitors. It also addresses the challenges and future prospects associated with MXenes as wearable energy storage devices. The integration and development of MXenes-based energy storage devices into other wearable devices holds promise for the future of the electronic industry.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.