Hareesh Chundayil , Vinay P. Majety , Armin Scrinzi
{"title":"用于 tRecX 代码的混合反对称耦合通道法(haCC)","authors":"Hareesh Chundayil , Vinay P. Majety , Armin Scrinzi","doi":"10.1016/j.cpc.2024.109279","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new implementation of the hybrid antisymmetrized Coupled Channels (haCC) method in the framework of the tRecX (Scrinzi, 2022 <span>[6]</span>). The method represents atomic and molecular multi-electron functions by combining CI functions, Gaussian molecular orbitals, and a numerical single-electron basis. It is suitable for describing high harmonic generation and the strong-field dynamics of ionization. Fully differential photoemission spectra are computed by the tSurff method. The theoretical background of haCC is outlined and key improvements compared to its original formulation are highlighted. We discuss control of over-completeness resulting from the joint use of the numerical basis and Gaussian molecular orbitals by pseudo-inverses based on the Woodbury formula. Further new features of this tRecX release are the iSurff method, new input features, and the AMOS gateway interface. The mapping of haCC into the tRecX framework for solving the time-dependent Schrödinger equation is shown. Use, performance, and accuracy of haCC are discussed on the examples of high-harmonic generation and strong-field photo-emission by short laser pulses impinging on the Helium atom and on the linear molecules <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <em>CO</em>.</p></div><div><h3>Program summary</h3><p><em>Program title:</em> tRecX — time-dependent Recursive indeXing (tRecX=tSurff+irECS)</p><p><em>CPC Library link to program files:</em> <span>https://doi.org/10.17632/m9g2jc82sw.1</span><svg><path></path></svg></p><p><em>Developer's repository link:</em> <span>https://gitlab.physik.uni-muenchen.de/AG-Scrinzi/tRecX</span><svg><path></path></svg></p><p><em>Licensing provisions:</em> GNU General Public License 2</p><p><em>Programming language:</em> C++</p><p><em>External libraries:</em> Eigen, arpack, lapack, blas, boost, FFTW (optional)</p><p><em>Journal Reference of previous version:</em> A. Scrinzi, Comp. Phys. Comm., 270:108146, 2022.</p><p><em>Does the new version supersede the previous version:</em> Yes</p><p><em>Reasons for the new version:</em> Major new functionality: haCC — hybrid antisymmetrized coupled channels method</p><p><em>Summary of revisions:</em> Main additions are haCC and iSurff. Code usage and compilation were improved.</p><p><em>Nature of problem:</em> tRecX is a general solver for time-dependent Schrödinger-like problems, with applications mostly in strong field and attosecond physics. There are no technical restrictions on the spatial dimension of the problem with up to 6 spatial dimensions realized in the strong-field double ionization of Helium. Gaussian-based quantum chemical multi-electron atomic and molecular structure can be combined with the numerical basis. A selection of coordinate systems is available and any Hamiltonian involving up to second derivatives and arbitrary up to three dimensional potentials can be defined on input by simple scripts.</p><p><em>Solution method:</em> The method of lines is used with spatial discretization by a flexible combination of one dimensional basis sets, DVR representations, discrete vectors, expansions into higher-dimensional eigenfunctions of user-defined operators, and Gaussian based molecular orbitals. Multi-electron Gaussian-based CI (configuration interaction) functions for neutrals and ions are combined with the numerical basis. Photo-emission spectra are calculated using the time-dependent surface flux method (tSurff) in combination with infinite range exterior complex scaling (irECS) for absorption. The code is object oriented and makes extensive use of tree-structures and recursive algorithms. Parallelization is by MPI. Code design and performance allow use in production as well as for graduate level training.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002029/pdfft?md5=4816c45cdf126acf37592d039f9ea41b&pid=1-s2.0-S0010465524002029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The hybrid anti-symmetrized coupled channels method (haCC) for the tRecX code\",\"authors\":\"Hareesh Chundayil , Vinay P. Majety , Armin Scrinzi\",\"doi\":\"10.1016/j.cpc.2024.109279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new implementation of the hybrid antisymmetrized Coupled Channels (haCC) method in the framework of the tRecX (Scrinzi, 2022 <span>[6]</span>). The method represents atomic and molecular multi-electron functions by combining CI functions, Gaussian molecular orbitals, and a numerical single-electron basis. It is suitable for describing high harmonic generation and the strong-field dynamics of ionization. Fully differential photoemission spectra are computed by the tSurff method. The theoretical background of haCC is outlined and key improvements compared to its original formulation are highlighted. We discuss control of over-completeness resulting from the joint use of the numerical basis and Gaussian molecular orbitals by pseudo-inverses based on the Woodbury formula. Further new features of this tRecX release are the iSurff method, new input features, and the AMOS gateway interface. The mapping of haCC into the tRecX framework for solving the time-dependent Schrödinger equation is shown. Use, performance, and accuracy of haCC are discussed on the examples of high-harmonic generation and strong-field photo-emission by short laser pulses impinging on the Helium atom and on the linear molecules <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <em>CO</em>.</p></div><div><h3>Program summary</h3><p><em>Program title:</em> tRecX — time-dependent Recursive indeXing (tRecX=tSurff+irECS)</p><p><em>CPC Library link to program files:</em> <span>https://doi.org/10.17632/m9g2jc82sw.1</span><svg><path></path></svg></p><p><em>Developer's repository link:</em> <span>https://gitlab.physik.uni-muenchen.de/AG-Scrinzi/tRecX</span><svg><path></path></svg></p><p><em>Licensing provisions:</em> GNU General Public License 2</p><p><em>Programming language:</em> C++</p><p><em>External libraries:</em> Eigen, arpack, lapack, blas, boost, FFTW (optional)</p><p><em>Journal Reference of previous version:</em> A. Scrinzi, Comp. Phys. Comm., 270:108146, 2022.</p><p><em>Does the new version supersede the previous version:</em> Yes</p><p><em>Reasons for the new version:</em> Major new functionality: haCC — hybrid antisymmetrized coupled channels method</p><p><em>Summary of revisions:</em> Main additions are haCC and iSurff. Code usage and compilation were improved.</p><p><em>Nature of problem:</em> tRecX is a general solver for time-dependent Schrödinger-like problems, with applications mostly in strong field and attosecond physics. There are no technical restrictions on the spatial dimension of the problem with up to 6 spatial dimensions realized in the strong-field double ionization of Helium. Gaussian-based quantum chemical multi-electron atomic and molecular structure can be combined with the numerical basis. A selection of coordinate systems is available and any Hamiltonian involving up to second derivatives and arbitrary up to three dimensional potentials can be defined on input by simple scripts.</p><p><em>Solution method:</em> The method of lines is used with spatial discretization by a flexible combination of one dimensional basis sets, DVR representations, discrete vectors, expansions into higher-dimensional eigenfunctions of user-defined operators, and Gaussian based molecular orbitals. Multi-electron Gaussian-based CI (configuration interaction) functions for neutrals and ions are combined with the numerical basis. Photo-emission spectra are calculated using the time-dependent surface flux method (tSurff) in combination with infinite range exterior complex scaling (irECS) for absorption. The code is object oriented and makes extensive use of tree-structures and recursive algorithms. Parallelization is by MPI. Code design and performance allow use in production as well as for graduate level training.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002029/pdfft?md5=4816c45cdf126acf37592d039f9ea41b&pid=1-s2.0-S0010465524002029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002029\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The hybrid anti-symmetrized coupled channels method (haCC) for the tRecX code
We present a new implementation of the hybrid antisymmetrized Coupled Channels (haCC) method in the framework of the tRecX (Scrinzi, 2022 [6]). The method represents atomic and molecular multi-electron functions by combining CI functions, Gaussian molecular orbitals, and a numerical single-electron basis. It is suitable for describing high harmonic generation and the strong-field dynamics of ionization. Fully differential photoemission spectra are computed by the tSurff method. The theoretical background of haCC is outlined and key improvements compared to its original formulation are highlighted. We discuss control of over-completeness resulting from the joint use of the numerical basis and Gaussian molecular orbitals by pseudo-inverses based on the Woodbury formula. Further new features of this tRecX release are the iSurff method, new input features, and the AMOS gateway interface. The mapping of haCC into the tRecX framework for solving the time-dependent Schrödinger equation is shown. Use, performance, and accuracy of haCC are discussed on the examples of high-harmonic generation and strong-field photo-emission by short laser pulses impinging on the Helium atom and on the linear molecules and CO.
Program summary
Program title: tRecX — time-dependent Recursive indeXing (tRecX=tSurff+irECS)
CPC Library link to program files:https://doi.org/10.17632/m9g2jc82sw.1
Journal Reference of previous version: A. Scrinzi, Comp. Phys. Comm., 270:108146, 2022.
Does the new version supersede the previous version: Yes
Reasons for the new version: Major new functionality: haCC — hybrid antisymmetrized coupled channels method
Summary of revisions: Main additions are haCC and iSurff. Code usage and compilation were improved.
Nature of problem: tRecX is a general solver for time-dependent Schrödinger-like problems, with applications mostly in strong field and attosecond physics. There are no technical restrictions on the spatial dimension of the problem with up to 6 spatial dimensions realized in the strong-field double ionization of Helium. Gaussian-based quantum chemical multi-electron atomic and molecular structure can be combined with the numerical basis. A selection of coordinate systems is available and any Hamiltonian involving up to second derivatives and arbitrary up to three dimensional potentials can be defined on input by simple scripts.
Solution method: The method of lines is used with spatial discretization by a flexible combination of one dimensional basis sets, DVR representations, discrete vectors, expansions into higher-dimensional eigenfunctions of user-defined operators, and Gaussian based molecular orbitals. Multi-electron Gaussian-based CI (configuration interaction) functions for neutrals and ions are combined with the numerical basis. Photo-emission spectra are calculated using the time-dependent surface flux method (tSurff) in combination with infinite range exterior complex scaling (irECS) for absorption. The code is object oriented and makes extensive use of tree-structures and recursive algorithms. Parallelization is by MPI. Code design and performance allow use in production as well as for graduate level training.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.