具有慢 p-Laplacian 扩散和旋转的三维趋化-斯托克斯系统弱解的有界性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haolan He, Zhongping Li
{"title":"具有慢 p-Laplacian 扩散和旋转的三维趋化-斯托克斯系统弱解的有界性","authors":"Haolan He,&nbsp;Zhongping Li","doi":"10.1016/j.nonrwa.2024.104164","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following chemotaxis-Stokes system with general sensitivity and rotation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>n</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mi>S</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>n</mi><mi>c</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>∇</mo><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>n</mi><mo>∇</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with zero-flux boundary and no-slip boundary condition. We prove the boundedness of the weak solutions to the initial–boundary value problem of the 3D chemotaxis-Stokes system with <span><math><mrow><mi>p</mi><mo>−</mo></mrow></math></span>Laplacian diffusion if <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>p</mi><mo>+</mo><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>6</mn></mrow></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, which improves the results of papers [Chen et al., Nonlinear Anal. Real World Appl., 76 (2024) 103996; Zhuang et al., Nonlinear Anal. Real World Appl., 56 (2020) 103163 and Tao et al., J. Differ. Equ., 268(11) (2020) 6879–6919] and extends the result of the paper [Jin, J. Differ. Equ. 287 (2021) 148–184] to the chemotaxis system with general sensitivity and rotation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of weak solutions to a 3D chemotaxis-Stokes system with slow p−Laplacian diffusion and rotation\",\"authors\":\"Haolan He,&nbsp;Zhongping Li\",\"doi\":\"10.1016/j.nonrwa.2024.104164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the following chemotaxis-Stokes system with general sensitivity and rotation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>n</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mi>S</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>n</mi><mi>c</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>∇</mo><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>n</mi><mo>∇</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with zero-flux boundary and no-slip boundary condition. We prove the boundedness of the weak solutions to the initial–boundary value problem of the 3D chemotaxis-Stokes system with <span><math><mrow><mi>p</mi><mo>−</mo></mrow></math></span>Laplacian diffusion if <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>p</mi><mo>+</mo><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>6</mn></mrow></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, which improves the results of papers [Chen et al., Nonlinear Anal. Real World Appl., 76 (2024) 103996; Zhuang et al., Nonlinear Anal. Real World Appl., 56 (2020) 103163 and Tao et al., J. Differ. Equ., 268(11) (2020) 6879–6919] and extends the result of the paper [Jin, J. Differ. Equ. 287 (2021) 148–184] to the chemotaxis system with general sensitivity and rotation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001044\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以下具有一般灵敏度和旋转 nt+u⋅∇n=∇⋅(|∇n|p-2∇n)-∇(nS(x,n,c)∇c),x∈Ω,t> 的趋化-斯托克斯系统;0,ct+u∇c=Δc-nc,x∈Ω,t>0,ut+∇P=Δu+n∇j,x∈Ω,t>0,∇⋅u=0,x∈Ω,t>0在具有零流动边界和无滑动边界条件的光滑有界域Ω∈R3 中。我们证明了在 43p+α>72-63 和 p>2 条件下,具有 p-Laplacian 扩散的三维 chemotaxis-Stokes 系统初始边界值问题弱解的有界性,从而改进了论文 [Chen et al.,76 (2024) 103996;Zhuang 等,Nonlinear Anal.Real World Appl.Equ., 268(11) (2020) 6879-6919],并将论文[Jin, J. Differ. Equ. 287 (2021) 148-184] 的结果扩展到具有一般敏感性和旋转的趋化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of weak solutions to a 3D chemotaxis-Stokes system with slow p−Laplacian diffusion and rotation

In this paper, we consider the following chemotaxis-Stokes system with general sensitivity and rotation nt+un=(|n|p2n)(nS(x,n,c)c),xΩ,t>0,ct+uc=Δcnc,xΩ,t>0,ut+P=Δu+nϕ,xΩ,t>0,u=0,xΩ,t>0in a smooth bounded domain ΩR3 with zero-flux boundary and no-slip boundary condition. We prove the boundedness of the weak solutions to the initial–boundary value problem of the 3D chemotaxis-Stokes system with pLaplacian diffusion if 43p+α>7263 and p>2, which improves the results of papers [Chen et al., Nonlinear Anal. Real World Appl., 76 (2024) 103996; Zhuang et al., Nonlinear Anal. Real World Appl., 56 (2020) 103163 and Tao et al., J. Differ. Equ., 268(11) (2020) 6879–6919] and extends the result of the paper [Jin, J. Differ. Equ. 287 (2021) 148–184] to the chemotaxis system with general sensitivity and rotation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信