Dario Izzo, Emmanuel Blazquez, Robin Ferede, Sebastien Origer, Christophe De Wagter, Guido C. H. E. de Croon
{"title":"航天器神经制导和控制中的最优化原则。","authors":"Dario Izzo, Emmanuel Blazquez, Robin Ferede, Sebastien Origer, Christophe De Wagter, Guido C. H. E. de Croon","doi":"10.1126/scirobotics.adi6421","DOIUrl":null,"url":null,"abstract":"<div >This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, optimality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the onboard computation of optimal actions. In this way, the sensor information is transformed in real time into optimal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym environment to test these architectures on real robotic platforms and thus increase confidence in their use in future space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard computational capabilities and similar control structures induced from the optimality principle sought but also entails different levels of uncertainties and unmodeled effects and a very different dynamical timescale.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adi6421","citationCount":"0","resultStr":"{\"title\":\"Optimality principles in spacecraft neural guidance and control\",\"authors\":\"Dario Izzo, Emmanuel Blazquez, Robin Ferede, Sebastien Origer, Christophe De Wagter, Guido C. H. E. de Croon\",\"doi\":\"10.1126/scirobotics.adi6421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, optimality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the onboard computation of optimal actions. In this way, the sensor information is transformed in real time into optimal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym environment to test these architectures on real robotic platforms and thus increase confidence in their use in future space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard computational capabilities and similar control structures induced from the optimality principle sought but also entails different levels of uncertainties and unmodeled effects and a very different dynamical timescale.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"9 91\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/scirobotics.adi6421\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adi6421\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adi6421","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Optimality principles in spacecraft neural guidance and control
This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, optimality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the onboard computation of optimal actions. In this way, the sensor information is transformed in real time into optimal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym environment to test these architectures on real robotic platforms and thus increase confidence in their use in future space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard computational capabilities and similar control structures induced from the optimality principle sought but also entails different levels of uncertainties and unmodeled effects and a very different dynamical timescale.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.