时间分割和 "前瞻 "模拟:物理事件构造了直观物理的视觉感知。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-08-01 Epub Date: 2024-06-20 DOI:10.1037/xhp0001218
Tristan S Yates, Shannon Yasuda, Ilker Yildirim
{"title":"时间分割和 \"前瞻 \"模拟:物理事件构造了直观物理的视觉感知。","authors":"Tristan S Yates, Shannon Yasuda, Ilker Yildirim","doi":"10.1037/xhp0001218","DOIUrl":null,"url":null,"abstract":"<p><p>How we perceive the physical world is not only organized in terms of objects, but also structured in time as sequences of events. This is especially evident in intuitive physics, with temporally bounded dynamics such as falling, occlusion, and bouncing demarcating the continuous flow of sensory inputs. While the spatial structure and attentional consequences of physical objects have been well-studied, much less is known about the temporal structure and attentional consequences of physical events in visual perception. Previous work has recognized physical events as units in the mind, and used presegmented object interactions to explore physical representations. However, these studies did not address whether and how perception imposes the kind of temporal structure that carves these physical events to begin with, and the attentional consequences of such segmentation during intuitive physics. Here, we use performance-based tasks to address this gap. In Experiment 1, we find that perception not only spontaneously separates visual input in time into physical events, but also, this segmentation occurs in a nonlinear manner within a few hundred milliseconds at the moment of the event boundary. In Experiment 2, we find that event representations, once formed, use coarse \"look ahead\" simulations to selectively prioritize those objects that are predictively part of the unfolding dynamics. This rich temporal and predictive structure of physical event representations, formed during vision, should inform models of intuitive physics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal segmentation and \\\"look ahead\\\" simulation: Physical events structure visual perception of intuitive physics.\",\"authors\":\"Tristan S Yates, Shannon Yasuda, Ilker Yildirim\",\"doi\":\"10.1037/xhp0001218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How we perceive the physical world is not only organized in terms of objects, but also structured in time as sequences of events. This is especially evident in intuitive physics, with temporally bounded dynamics such as falling, occlusion, and bouncing demarcating the continuous flow of sensory inputs. While the spatial structure and attentional consequences of physical objects have been well-studied, much less is known about the temporal structure and attentional consequences of physical events in visual perception. Previous work has recognized physical events as units in the mind, and used presegmented object interactions to explore physical representations. However, these studies did not address whether and how perception imposes the kind of temporal structure that carves these physical events to begin with, and the attentional consequences of such segmentation during intuitive physics. Here, we use performance-based tasks to address this gap. In Experiment 1, we find that perception not only spontaneously separates visual input in time into physical events, but also, this segmentation occurs in a nonlinear manner within a few hundred milliseconds at the moment of the event boundary. In Experiment 2, we find that event representations, once formed, use coarse \\\"look ahead\\\" simulations to selectively prioritize those objects that are predictively part of the unfolding dynamics. This rich temporal and predictive structure of physical event representations, formed during vision, should inform models of intuitive physics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/xhp0001218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xhp0001218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们对物理世界的感知不仅以物体为单位,还以事件序列为时间结构。这一点在直观物理学中尤为明显,有时间限制的动态(如坠落、闭塞和弹跳)划分了感官输入的连续流。虽然对物理对象的空间结构和注意后果已有深入研究,但对视觉感知中物理事件的时间结构和注意后果却知之甚少。以前的研究已经认识到物理事件是思维中的单元,并使用预分割对象交互来探索物理表征。然而,这些研究并没有解决感知是否以及如何施加时间结构来刻画这些物理事件,也没有解决在直观物理过程中这种分割的注意后果。在此,我们使用基于表现的任务来弥补这一不足。在实验 1 中,我们发现感知不仅会自发地将视觉输入的时间分割成物理事件,而且这种分割会在事件边界的几百毫秒内以非线性方式发生。在实验 2 中,我们发现事件表征一旦形成,就会使用粗略的 "前瞻性 "模拟,有选择性地优先选择那些可以预测动态发展的物体。在视觉过程中形成的物理事件表征的这种丰富的时间和预测结构,应能为直觉物理学模型提供信息。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal segmentation and "look ahead" simulation: Physical events structure visual perception of intuitive physics.

How we perceive the physical world is not only organized in terms of objects, but also structured in time as sequences of events. This is especially evident in intuitive physics, with temporally bounded dynamics such as falling, occlusion, and bouncing demarcating the continuous flow of sensory inputs. While the spatial structure and attentional consequences of physical objects have been well-studied, much less is known about the temporal structure and attentional consequences of physical events in visual perception. Previous work has recognized physical events as units in the mind, and used presegmented object interactions to explore physical representations. However, these studies did not address whether and how perception imposes the kind of temporal structure that carves these physical events to begin with, and the attentional consequences of such segmentation during intuitive physics. Here, we use performance-based tasks to address this gap. In Experiment 1, we find that perception not only spontaneously separates visual input in time into physical events, but also, this segmentation occurs in a nonlinear manner within a few hundred milliseconds at the moment of the event boundary. In Experiment 2, we find that event representations, once formed, use coarse "look ahead" simulations to selectively prioritize those objects that are predictively part of the unfolding dynamics. This rich temporal and predictive structure of physical event representations, formed during vision, should inform models of intuitive physics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信